Abstract
Brazil has been severely hit by COVID-19, with rapid spatial spread of both cases and deaths. We use daily data on reported cases and deaths to understand, measure, and compare the spatiotemporal pattern of the spread across municipalities. Indicators of clustering, trajectories, speed, and intensity of the movement of COVID-19 to interior areas, combined with indices of policy measures show that while no single narrative explains the diversity in the spread, an overall failure of implementing prompt, coordinated, and equitable responses in a context of stark local inequalities fueled disease spread. This resulted in high and unequal infection and mortality burdens. With a current surge in cases and deaths and several variants of concern in circulation, failure to mitigate the spread could further aggravate the burden.
Brazil is the only country that, with a population larger than 100 million, has a universal, comprehensive, and free of charge health care system. Over three decades, this system contributed to reducing inequalities in access to health care and outcomes (1). It also facilitated the management of previous public health emergencies, such as the HIV/AIDS pandemic (2). Despite recent cuts in the health budget (3), it was expected that Brazils health system would place the country in a good position to mitigate the COVID-19 pandemic. With national coordination and through a vast network of community health agents, actions adapted to existing local inequalities (i.e., regional distribution of physicians and hospital beds) could have been implemented (4). However, Brazil is one of the countries most severely hit by COVID-19. As of March 11, 2021, 11,277,717 cases and 272,889 deaths have been reported. Those represent 9.5% and 10.4% of the worldwide cases and deaths, respectively; yet, Brazil shares only 2.7% of the worlds population. In late May, 2020, Latin America was declared the epicenter of the COVID-19 pandemic, mainly because of Brazil. Since June 7, 2020, Brazil ranks 2nd in deaths worldwide.
In Brazil, the federal response has been a dangerous combination of inaction and wrongdoing, including the promotion of chloroquine as treatment despite a lack of evidence (5, 6). Without a coordinated national strategy, local responses varied in form, intensity, duration, and start and end times, to some extent associated with political alignments (7, 8). The country has seen very high attack rates (9) and disproportionally higher burden among the most vulnerable (10, 11), illuminating local inequalities (12). Following multiple introductions of SARS-CoV-2, Brazil had an initial epidemic phase (February 15 to March 18, 2020) with restricted circulation (13), preceded by undetected virus circulation (14). While the initial spread was determined by existing socioeconomic inequalities, the lack of a coordinated, effective, and equitable response likely fueled the widespread spatial propagation of SARS-CoV-2 (12). The goal of this study was to understand, measure, and compare the pattern of spread of COVID-19 cases and deaths in Brazil at fine spatial and temporal scales. We use daily data from State Health Offices covering the period from epidemiological week 9 (February 23-29) to week 41 (October 4-10).
In all states, it took less than a month between the first case and the first death; only 11 days in Amazonas and 21 in So Paulo (table S1). Epidemiological curves for Brazil (fig. S1) hide distinct patterns of initial reporting, propagation, and containment of SARS-CoV-2 across administrative units. As states and cities imposed and relaxed restrictive measures at different times, population mobility facilitated the circulation of the virus and acted as a trigger of disease spread (15). Figure 1, A and B, show that cumulative cases and deaths, respectively, per 100,000 people were not uniformly distributed across municipalities. We used the space-time scan statistic (16) to identify areas that significantly recorded a high number of cases (Fig. 1C and table S2) or deaths (Fig. 1D and table S3) over a defined period.
Cumulative number of COVID-19 cases (A) and deaths (B) per 100,000 people by municipality. Dark lines on the maps show state boundaries. State acronyms by region, North: AC=Acre, AP=Amap, AM=Amazonas, PA=Par, RO=Rondnia, RR=Roraima, and TO=Tocantins; Northeast: AL=Alagoas, BA=Bahia, CE=Cear, MA=Maranho, PB=Paraba, PE=Pernambuco, PI=Piau, RN=Rio Grande do Norte, and SE=Sergipe; Center-West: DF=Distrito Federal, GO=Gois, MT=Mato Grosso, and MS=Mato Grosso do Sul; Southeast: ES=Esprito Santo; MG=Minas Gerais; RJ=Rio de Janeiro; and SP=So Paulo; South: PR=Paran; RS=Rio Grande do Sul; and SC=Santa Catarina. Spatio-temporal clustering of cases (C) and deaths (D) across Brazilian municipalities. Color and number codes in the clusters and the table on the left are the same, and the table indicates the interval during which each cluster was statistically significant. The color gradient (dark red to dark blue) indicates the temporal change based on the initial date of the cluster, and the cluster number indicates the rank of the relative risk for each cluster (tables S2 and S3). Clusters were assessed with the space-time scan statistic (see supplementary materials).
Deaths clustered about a month before cases. This likely reflects problems in surveillance, data reporting, and low testing capacity. The first significant cluster of COVID-19 deaths started on May 18 (Fig. 1D, #5), centered around Recife (capital of Pernambuco). Five other clusters of deaths occurred before the first cluster of cases was observed on June 16 (Fig. 1C, #7). Among those are clusters around Fortaleza and Rio de Janeiro (capital cities of Cear and Rio de Janeiro, respectively), and in a large area including Amazonas, Par, and Amap, states that have a disproportionally lower hospital capacity. Amazonas (whose capital is Manaus) has the highest mortality per 100,000 people in the country, more than double the rate for Brazil. By October, about 76% of its population was estimated to have been infected (9, 17). Except for one cluster in August (Fig. 1D, #1), the duration of death clusters did not reduce over time, ranging from 10 to 13 days. This is different than what was observed in South Korea, where successful containment reduced the duration and the geographic extent of clusters over time (18). A similar pattern was observed for COVID-19 cases (Fig. 1C). In the center and southern areas, clusters occurred later (August and September), corroborating a regional pattern of propagation of SARS-CoV-2 (19).
To understand and compare how COVID-19 cases and deaths spread across Brazil we calculated the geographic center of the epidemic. Trajectories of the center by epidemiological week show that after the introduction in So Paulo, both cases (Fig. 2A and movie S1) and deaths (Fig. 2B and movie S2) progressively moved north until week 20 (starting May 10), when the epidemic started to recede in Amazonas and Cear, but gained force in Rio de Janeiro and So Paulo. Comparing trajectories in each state (fig. S2) we calculated a ratio of the distance the center moved each week to the distance between the capital city and the most distant municipality (tables S4 and S5). In eight states the median weekly ratio for deaths was larger than cases (Fig. 2C), suggesting a faster movement of the focus of deaths.
COVID-19 case- (A) and death-weighted (B) geographic centers by epidemiological week. Thick lines show the geographic center for Brazil, thin lines show the trajectory of the center in each state, and the black dot indicates the state capital city (see supplementary materials). The first case in each state was recorded in the capital city, except for Rio de Janeiro, Rondnia, Bahia, Minas Gerais, and Rio Grande do Sul, and thus the trajectory of the center starts in the interior. This was more common for deaths (14 states did not report the first death in the capital: Rio de Janeiro, Amazonas, Par, Piau, Rio Grande do Norte, Paraba, Esprito Santo, Paran, Santa Catarina, Mato Grosso do Sul, Mato Grosso, and Gois). Figure S2 shows detailed maps for each state. (C) Scatterplot of the median distance that the geographical center of cases (X-axis) and deaths (Y-axis) shifted weekly in each state (measured as the ratio of the distance that the geographical center of cases shifted weekly in each state to the distance between the capital city and the furthest municipality in the state). (D) Scatterplot of the number of days that it took for a state to reach 50 COVID-19 cases (X-axis) after the first case was reported and 50 deaths after the first COVID-19 confirmed death (Y-axis). (E) Scatterplot of the standardized number of cases per 100,000 people (X-axis) and deaths per 100,000 people (Y-axis) by state. The 45-degree lines in (C), (D), and (E) describe equal values for variables in the scatterplot.
On average, it took 17.3 and 32.3 days to reach 50 cases and deaths, respectively. However, in four states deaths accumulated to a 50-count first (Fig. 2D), and in Amazonas, Cear, and Rio de Janeiro the difference between the time it took for cases and deaths to reach a 50-count was 6, 1, and 3 days, respectively (table S1). This short interval suggests undetected (and thus unmitigated) introduction and propagation of the virus for some time. This was confirmed in Cear (20) where a retrospective epidemiological investigation revealed that the virus was already circulating in January. Also, if the initial cases occurred in high-income areas, it is possible that consultations in private practices were not reported into national systems of the Ministry of Health (20) and remained silent to the surveillance system. In addition, testing capacity in Brazil was limited, and the first diagnostic RT-PCR test kits started to be produced in the country only in March. Although efforts of retrospective investigation were not scaled-up in the country, a comparison of standardized rates of cases and deaths per 100,000 people (Fig. 2E) show that in 11 states the death toll was larger than incidence, including Amazonas, Cear, and Rio de Janeiro.
To quantitatively measure the intensity of the spread of COVID-19 cases and deaths over time we used the locational Hoover Index (HI) (21, 22). Values closer to 100 indicate concentration in few municipalities, while those close to zero suggest more homogeneous spreading. If containment measures were effective, we would expect the index to decline slowly, remaining relatively high over time. Also, if measures were effective to avoid a collapse of the hospital system, we would expect a higher index for deaths, compared to cases. Figure 3A shows the HI for Brazil, and a clear trend toward extensive spread for both cases and deaths until about week 30 (July 19-25). The pattern, however, varied across states. In the first week with reported events, Amazonas, Roraima, and Amap had HI below 50 for both cases and deaths. This suggests either undetected circulation of the virus before initial reports (and therefore when reporting started there was already a large fraction of the population that had been infected), or fast and multiple introductions of the virus immediately followed by rapid spatial propagation (tables S6 and S7).
(A) Locational Hoover index (see supplementary materials) for cases (blue line) and deaths (red line) by epidemiological week. The area around each curve indicates the maximum and minimum index observed across states. (B) States and weeks when the locational Hoover index for cases was bigger than the index for deaths, indicating a faster spread of deaths. Bivariate choropleth map of the locational Hoover Index for cases and deaths in epidemiological week 14 (March 29-April 4) (C) and epidemiological week 41 (October 4-10) (D). Since SARS-CoV-2 reached states at different epidemiological weeks, (C) shows data from week 12 for RJ and SP; week 13 for AM, PI, RN, PE, PR, SC, RS, and GO; week 15 for AC; and week 16 for TO. Similarly, (D) shows data for week 33 for MT, and week 39 for ES.
Overall, the spread of COVID-19 was fast. By week 24 (June 7-13) and 32 (August 2-8), all states had HI for cases and deaths, respectively, lower than 50. In nine states, including Amazonas, Amap, Cear, and Rio de Janeiro, the spreading of deaths was faster than cases over several weeks (Fig. 3B), with some overlap with the time when clusters were observed in those areas (Fig. 1, C and D). Figure 3, C and D, show the first and last weekly HI for cases and deaths by states and there are marked contrasts in HI trajectory (tables S6 and S7). By week 41 (October 4-10), COVID-19 deaths in Amap (HI=31.3) had moved to the interior faster than cases (HI=42.9). Rio de Janeiro had the most intense interiorization of both cases (HI=14.9) and deaths (HI=21.9), followed by Amazonas (HI cases=20.2, HI deaths=30.4). Both experienced a shortage of ICU beds, but Amazonas has smaller availability (about 11 ICU beds per 100,000 people vs 23 in Rio de Janeiro), all concentrated in the capital city, Manaus. As the virus moved to the interior a higher demand for scarce and distant resources intensified, not all of which were fulfilled in time to prevent fatalities (23). In Rio de Janeiro, political chaos compromised a prompt and effective response. Leaders were immersed in corruption accusations, the governor was removed from office and face an impeachment trial, and the Secretary of Health was changed three times between May and September, one of whom was arrested (24). In contrast, although Cear also experienced a near-collapse of the hospital system late April to mid-May, and had silent circulation of the virus more than a month before the first case was officially reported (20), it ranked 6th in movement of cases (HI=31.3), but was the antepenultimate in deaths (HI=64.5). This suggests that even with the continued spread of the virus, local actions were successful in preventing fatality. No state had HI for cases higher than 50 by week 41, revealing an extensive pattern of disease spread toward the interior.
Overall, a higher percentage of COVID-19 cases and deaths were observed outside capital cities in weeks 20 (May 10-16) and 22 (May 24-30), respectively (Fig. 4A), with varied patterns across states (table S1). Rio Grande do Sul, Santa Catarina, and Paran, all in the South region, had earlier and concurrent shifts in cases and deaths (in March), and this was the last region to show a major surge in COVID-19. In Rio de Janeiro and Amazonas, the shift in deaths was much later than cases, 10 and 8 weeks, respectively.
(A) Percentage of cases (blue lines) and deaths (red lines) in the state capitals (solid lines) and the remaining municipalities (dashed lines) by epidemiological week. (B) Percentage of reported COVID-19 cases and deaths, and selected variables by epidemiological week. Variables: Stringency Index (STR), Containment Index (CTN), Social Distancing Index (SD), locational Hoover Index for cases (HIc), locational Hoover Index for deaths (HId), percentage of cases in each epidemiological week (PCTc), percentage of deaths in each epidemiological week (PCTd), normalized distance by which the national geographical center of cases shifted in each week (DSTc), and normalized distance by which the national geographical center of deaths shifted in each week (DSTd). Distances were normalized to vary between 0 and 100. The subscript min indicates the minimum value of the index observed among all states in each week; the subscript max denotes the maximum value. (C) Correlation matrix (Pearson). Cells in shades of red or blue are statistically significant: * <0.05, ** <0.01, and *** <0.001. (D) Hierarchical clustering dendrogram by state based on five variables: cumulative deaths per 100,000 people, maximum percentage of deaths in a week, maximum SD, epidemiological week when HId became lower than 50, and the maximum value of effective Rt over the study period (see supplementary materials).
To better capture policies adopted at the national and local levels and their associations with movement of COVID-19 toward the interior of states, we used three indicators, the Stringency Index (STR), the Containment Index (CTN all policies in STR except for the use of masks), and the Social Distancing Index (SD based on mobile devices). Because states introduced measures at different times with various duration, national indices hide much variation (Fig. 4B). We observed expected correlations (table S8) between policy indicators and HI for cases and deaths (Fig. 4C), but a positive correlation between HI and the distance by which the national geographical center of cases shifted weekly. This suggests a pattern of progressive concentration of cases and deaths in few but widespread areas. Considering each state (fig. S3), Amap showed a negative correlation between STR and HI for deaths, indicating that policy measures failed to prevent the movement of deaths (this was the only state where deaths moved to the interior faster than cases by week 41; Fig. 3D).
We used hierarchical clustering analysis (25) in an attempt to group states into categories based on measures that captured the overall COVID-19 mortality burden, intensity of transmission, speed of COVID-19 deaths toward the interior of states, and adoption of distancing measures (Fig. 4D). Categories 3 and 4 include the top 10 states in deaths/100,000 people, as well as those that observed the first spatiotemporal clustering of deaths, and fast reporting and movement of deaths. Category 2 has the highest number of contiguous states and the lowest death burden by week 41. However, all categories combine states with different levels of inequality and distinct political alignment.
In summary, our results highlight the fast spread of both cases and deaths of COVID-19 in Brazil, with distinct patterns and burden by state. They demonstrate that no single narrative explains the propagation of the virus across states in Brazil. Instead, layers of complex scenarios interweave, resulting in varied and concurrent COVID-19 epidemics across the country. First, Brazil is large and unequal, with disparities in quantity and quality of health resources (e.g., hospital beds, physicians), and income (e.g., an emergency cash transfer program started only in June 2020, and by November 41% of the households were receiving it). Second, a dense urban network that connects and influences municipalities through transportation, services, and business (26) was not fully interrupted during peaks in cases or deaths. Third, political alignment between governors and the president had a role in the timing and intensity of distancing measures (7), and polarization politicized the pandemic with consequences to adherence to control actions (27). Fourth, SARS-CoV-2 was circulating undetected in Brazil for more than a month (20), a result of the lack of well-structured genomic surveillance (28). Fifth, cities imposed and relaxed measures at different moments, based on distinct criteria, facilitating propagation (15). Our findings speak to those issues, but also show that some states were resilient, such as Cear, while others that comparatively had more resources failed to contain the propagation of COVID-19, such as Rio de Janeiro.
In such a scenario, prompt and equitable responses, coordinated at the federal level, are imperative to avoid fast virus propagation and disparities in outcomes (12). Yet, the COVID-19 response in Brazil was neither prompt nor equitable. It still isnt. Brazil is currently facing the worst moment of the pandemic, with a record number of cases and deaths, and near collapse of the hospital system. Vaccination has started but at a slow pace due to limited availability of doses. A new variant of concern (VOC), which emerged in Manaus (P1) in December, is estimated to be 1.4-2.2 times more transmissible, and able to evade immunity from previous non-P1 infection (29). That variant is spreading across the country. It became the most prevalent in circulation in six of eight states where investigations were performed (30). As of March 11, 2021, Brazil already reported 40% of the total COVID-19 deaths that occurred in 2020. In January 2021, Manaus witnessed a spike in cases and hospitalizations, a collapse of the hospital system, including a shortage of oxygen for patients (31). The death toll is unbearable, as Manaus already recorded 39.8% more COVID-19 deaths in 2021 than in 2020. Without immediate action, this could be a preview of what is yet to happen in other localities in Brazil. Without immediate containment, coordinated epidemiological and genomic surveillance measures, and an effort to vaccinate the largest number of people in the shortest possible time, the propagation of P1 will likely resemble the patterns here demonstrated, leading to unimaginable loss of lives. Failure to avoid this new round of propagation will facilitate the emergence of new VOCs, isolate Brazil as a threat to global health security, and lead to a completely avoidable humanitarian crisis.
G. James, D. Witten, T. Hastie, R. Tibshirani, An Introduction to Statistical Learning with Applications in R (Springer, 2017).
Instituto Brasileiro de Geografia e Estatistica, Regies de Influncia das Cidades: 2018 (IBGE, Coordenao de Geografia, 2020).
N. R. Faria, T. A. Mellan, C. Whittaker, I. M. Claro, D. S. da Candido, S. Mishra, M. A. E. Crispim, F. C. Sales, I. Hawryluk, J. T. McCrone, R. J. G. Hulswit, L. A. M. Franco, M. S. Ramundo, J. G. de Jesus, P. S. Andrade, T. M. Coletti, G. M. Ferreira, C. A. M. Silva, E. R. Manuli, R. H. M. Pereira, P. S. Peixoto, M. U. Kraemer, N. Gaburo Jr., C. C. da Camilo, H. Hoeltgebaum, W. M. Souza, E. C. Rocha, L. M. de Souza, M. C. de Pinho, L. J. T Araujo, F. S. V. Malta, A. B. de Lima, J. P. do Silva, D. A. G. Zauli, A. C. S. de Ferreira, R. P. Schnekenberg, D. J. Laydon, P. G. T. Walker, H. M. Schlter, A. L. P. dos Santos, M. S. Vidal, V. S. Del Caro, R. M. F. Filho, H. M. dos Santos, R. S. Aguiar, J. L. P. Modena, B. Nelson, J. A. Hay, M. Monod, X. Miscouridou, H. Coupland, R. Sonabend, M. Vollmer, A. Gandy, M. A. Suchard, T. A. Bowden, S. L. K. Pond, C.-H. Wu, O. Ratmann, N. M. Ferguson, C. Dye, N. J. Loman, P. Lemey, A. Rambaut, N. A. Fraiji, M. P. S. S. do Carvalho, O. G. Pybus, S. Flaxman, S. Bhatt, E. C. Sabino, Genomics and epidemiology of a novel SARS-CoV-2 lineage in Manaus, Brazil. medRxiv 2021.2002.2026.21252554 [Preprint]. 3 March 2021. doi:10.1101/2021.02.26.21252554
A. D. Gordon, Null models in cluster validation, in From Data to Knowledge, W. Gaul, D. Pfeifer, Eds. (Springer, 1996), pp. 3244.
See original here:
Spatiotemporal pattern of COVID-19 spread in Brazil - Science
- Coronavirus Scam Alert: Watch Out For These Risky COVID-19 Websites And Emails - Forbes [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- COVID19: Broome County Executive expected to sign executive orders on virus - WBNG-TV [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Houston-based company ready to test COVID-19 'vaccine candidate,' but doesn't have the funds - KHOU.com [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- COVID19 Mesa County Public Health [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Coronavirus Disease 2019 (COVID-19) | SCDHEC [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Coronavirus disease 2019 - Wikipedia [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Hackers are jumping on the COVID-19 pandemic to spread malware - TechCrunch [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- COVID-19 can last a few days on surfaces, according to new experiment findings - ABC News [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- The Guardian view on the UKs Covid-19 response: confused and hesitant - The Guardian [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- The COVID-19 Coronavirus Pandemic Highlights The Importance Of Scientific Expertise - Forbes [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- WHO Expert: Aggressive Action Against Coronavirus Cuts Down On Spread : Goats and Soda - NPR [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- 2 new cases of COVID-19 at Chicago schools - WGN TV Chicago [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Will Gargling with Salt Water or Vinegar 'Eliminate' the COVID-19 Coronavirus? - Snopes.com [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Worried about dying from COVID-19? You might be a millennial | TheHill - The Hill [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Startups developing tech to combat COVID-19 urged to apply for fast-track EU funding - TechCrunch [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Why do dozens of diseases wax and wane with the seasonsand will COVID-19? - Science Magazine [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- WHO, UN Foundation and partners launch first-of-its-kind COVID-19 Solidarity Response Fund - World Health Organization [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Covid-19: PM to address nation tonight - New Straits Times [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- COVID-19: Where every sport lies after mass disruption - RTE.ie [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- COVID-19: Facts, myths and hypotheses | TheHill - The Hill [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Hong Kong Has Largely Survived COVID-19. Can New York and The US Do It Too? - BuzzFeed News [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- UPDATE: Case of COVID-19 confirmed in Wilson County - WITN [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Is This Train Car Carrying 'COVID-19'? - Snopes.com [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Coronavirus pandemic: facts, updates and what to do about COVID-19 - The Verge [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- DHS: 34 people test positive for COVID-19 in Wisconsin - WBAY [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- COVID-19 by the numbers; plus key resources to help you stay informed - Berkeleyside [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- The Covid-19 puzzles that scientists are still trying to answer - The Guardian [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- What's the COVID-19 end game? - The San Diego Union-Tribune [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- The Covid-19 coronavirus is not the flu. Its worse. - Vox.com [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Phones Could Track the Spread of Covid-19. Is It a Good Idea? - WIRED [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- NIH Reports First Known Employee with COVID-19 Infection - National Institutes of Health [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Newborn tests positive for COVID-19 in London - Livescience.com [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Covid-19: Malaysia's pandemic action plan activated for the coronavirus - The Star Online [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- How Bad Will The COVID-19 Coronavirus Epidemic Get In The U.S.? Health Experts Weigh In - Forbes [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Can People Who Recover from COVID-19 Become Reinfected? - Snopes.com [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- THE LATEST: 41 test positive for COVID-19 in the state - WFSB [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Twelve new cases of COVID-19 announced in Illinois; bringing total to 105 - KWQC-TV6 [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Eagle County outlines shift for COVID-19 testing, Vail Health shifts operations - Vail Daily News [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- 7th positive COVID-19 case announced in Hawaii, all cases related to travel - KHON2 [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Canada tightens borders over coronavirus will it curb COVID-19s spread? - Global News [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- As health care workers prepare for COVID-19, medical students pitch in on the homefront - Minnesota Public Radio News [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Coronavirus First positive case of COVID-19 confirmed in Geauga County Kaylyn Hlavaty 7:58 AM - News 5 Cleveland [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- 2nd presumptive case of COVID 19 reported in Bell County - KWTX [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- New confirmed cases of COVID-19 in Wisconsin - WKOW [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Hawaii National Guard ready to step in against spread of COVID-19 - KHON2 [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Alberta orders all classes cancelled, daycares closed as COVID-19 cases rise to 56 in the province - Global News [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Has Italy Stopped Treating the Elderly in the COVID-19 Pandemic? - Snopes.com [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Coronavirus testing: Information on COVID-19 tests according to state health departments - NBCNews.com [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Working from home because of COVID-19? Here are 10 ways to spend your time - Science Magazine [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Two positive COVID-19 cases announced in Fairbanks, bringing Alaska's confirmed total to 3 - Anchorage Daily News [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- 8 more positive cases of COVID-19 brings Michigan total to 33 - FOX 2 Detroit [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- COVID-19: Who Is Infectious? - Forbes [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- The Guardian view on the latest Covid-19 steps: a recipe for isolation - The Guardian [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Government publishes updated COVID-19 industry guidance - GOV.UK [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- NIH clinical trial of investigational vaccine for COVID-19 begins - National Institutes of Health [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Expanding Colorado's COVID-19 Testing Capacity Proves Frustrating to Polis, Doctors And The Public - Colorado Public Radio [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Microsoft Bing launches interactive COVID-19 map to provide pandemic news - The Verge [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Coronavirus tips: How to slow the spread of COVID-19 with hand-washing, social distance - USA TODAY [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- See Which Countries are Flattening their COVID-19 Curve - Visual Capitalist [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- With launch of COVID-19 data hub, the White House issues a call to action for AI researchers - TechCrunch [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- COVID-19 - Cabinet for Health and Family Services [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Coronavirus Disease 2019 (COVID-19) | AustinTexas.gov [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- First COVID-19 case in Waterbury is confirmed - Waterbury Republican American [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Covid-19 reveals the alarming truth that many children cant wash their hands at school - The Guardian [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Statement on COVID-19 Panel Discussion Notes That Were Attributed to UCSF - UCSF News Services [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Covid-19 coronavirus testing in the US has been absurdly sluggish. That puts us at risk. - Vox.com [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Regal is closing all theaters until further notice over COVID-19 fears - TechCrunch [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Amazon limiting shipments to certain types of products due to COVID-19 pandemic - TechCrunch [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Coralville company to produce millions of kits to test for COVID-19 - KCRG [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Number of COVID-19 cases in Erie County rises to 11, new case confirmed in Wyoming County - WIVB.com - News 4 [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Coronavirus tips and symptoms: What everyone should know about getting the new coronavirus - Vox.com [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Tech giants are getting creative to manage the COVID-19 crisis - The Verge [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- COVID-19: Mental health in the age of coronavirus - UN News [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- White House provides an update on COVID-19 testing in the U.S., says theres been a dramatic ramp - TechCrunch [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Covid-19: How long does the coronavirus last on surfaces? - BBC News [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Hospital in Boston will be converted into Covid-19 treatment center - STAT [Last Updated On: March 18th, 2020] [Originally Added On: March 18th, 2020]
- 78 cases of COVID-19 confirmed in Tennessee - NewsChannel5.com [Last Updated On: March 18th, 2020] [Originally Added On: March 18th, 2020]
- COVID 19: Tennessee confirmed cases reaches 52, Dept of Health releases age ranges of those infected - Clarksville Now [Last Updated On: March 18th, 2020] [Originally Added On: March 18th, 2020]
- Housing associations under pressure to offer Covid-19 rent holidays - The Guardian [Last Updated On: March 18th, 2020] [Originally Added On: March 18th, 2020]
- Sacramento woman dead from COVID-19 attended church with others who have virus - KCRA Sacramento [Last Updated On: March 18th, 2020] [Originally Added On: March 18th, 2020]