Secretory IgA and course of COVID-19 in patients receiving a bacteria-based immunostimulant agent in addition to … – Nature.com

Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181, 271280. https://doi.org/10.1016/j.cell.2020.02.052 (2020).

Article PubMed PubMed Central Google Scholar

Chuchalin, A. G., Svitich, O. A., & Kostinov, M. P. Mucosal immunity in patients with COVID-19: treatment and rehabilitation. Monograph. 128 (Moscow, MDV Group, 2022)

Schaad, U. B. Prevention of pediatric respiratory tract infections: emphasis on the role of OM-85. Eur. Respir. Rev. 14, 7477. https://doi.org/10.1183/09059180.05.00009506 (2005).

Article Google Scholar

Korovkina, E. S. & Kostinov, M. P. immunopathological mechanisms of community-acquired pneumonia and chronic obstructive pulmonary disease caused by the infectious pathology of these diseases, and ways of possible immunocorrection. ZHMEI. 2, 100109 (2019).

Google Scholar

Kostinov, M. P., Tatevosov, V. R., Protasov, A. D., Gajnitdinova, V. V. & Sizov, A. V. Vaccination against Staphylococcus aureus and some representatives of the Enterobacteriaceae family in the complex treatment of community-acquired pneumonia of mild course in new recruits. Medicinskij vestnik MVD. CXV(6), 2329 (2021).

Kostinov, M. P., Zorin, N. A., Kazharova, S. V. & Zorina, V. N. Comparative effect of immunomodulators on concentrations of hydrolase inhibitors and lactoferrin in community-acquired pneumonia in adults. Med. Immunol. 22(4), 791798 (2020).

Article Google Scholar

Kostinov, M. P. et al. The influence of immunomodulators on various markers of the acute phase of inflammation in patients with non-severe community-acquired pneumonia. Tuberculosis Lung Dis. 99(4), 3643 (2021).

Article Google Scholar

Chang, S. Y., Ko, H. J. & Kweon, M. N. Mucosal dendritic cells shape mucosal immunity. Exp. Mol. Med. 46, e84 (2014).

Article CAS PubMed PubMed Central Google Scholar

Chuchalin, A.G. Respiratornaya meditsina. Rukovodstvo 2nd Ed. [Respiratory medicine. Guidelines], vol. 2, 544 (Moscow, Litterra Publ, 2017).

Nikulin, B. A. Otsenka i korrektsiya immunnogo statusa (Assessment and correction of immune status) in Assessment and management of the immune status disorders. 376 (Moscow, GEOTAR-Media Publ., 2007).

Protasov, A. D. et al. The effect of complex vaccination against pneumococcal, hemophilic type b infections and influenza in patients with chronic obstructive pulmonary disease. J. Mikrobiologii, Epidemiologii i Immunobiologii 4, 8084 (2011).

Google Scholar

Ryzhov, A. A., Kostinov, M. P. & Magarshak, O. O. The use of vaccines against pneumococcal and hemophilic type b infections in patients with chronic pathology. Epidemiologiya i Vaktsionoprofilaktika 6(19), 2427 (2004).

Google Scholar

Kostinov, M. P., & Chuchalin, A. G. Clinical immunology guide to respiratory medicine. 2nd ed. 304 (Moscow, Gruppa MDV Publ., 2018).

Avdeev, S. N. et al. Clinical efficacy of mechanical bacterial lysate in the prevention of infectious exacerbations of chronic obstructive pulmonary disease. Terapevticheskiy Arkhiv 92(4), 5763 (2020).

Article CAS Google Scholar

Svitich, O. A. et al. The level of sIgA in nasal secretions and the incidence of complications in hospitalized patients with COVID-19 against an immunotropic drug. ERJ Open Res. 8, 258. https://doi.org/10.1183/23120541.LSC-2022.258 (2022).

Article Google Scholar

Svitich, O. A. et al. Hydrogen effect on the mechanisms of mucosal immunity in patients with COVID-19. Terapevticheskii Arkhiv. 94(3), 372377. https://doi.org/10.26442/00403660.2022.03.201398 (2022).

Article CAS PubMed Google Scholar

Carlo, C. et al. Systemic and mucosal antibody responses specific to SARS-CoV-2 during mild versus severe COVID-19. J. Allergy Clin. Immunol. 147(2), 545557 (2021).

Article Google Scholar

Sterlin, D. et al. IgA dominates the early neutralizing antibody response to SARS-CoV-2. Sci. Transl. Med. 13(577), 2223 (2021).

Article Google Scholar

Kostinov, M. et al. Changes in nasal, pharyngeal and salivary secretory IgA levels in patients with COVID-19 and the possibility of correction of their secretion using combined intranasal and oral administration of a pharmaceutical containing antigens of opportunistic microorganisms. Drugs Contexts. 12, 1. https://doi.org/10.7573/dic.2022-10-4 (2023).

Article Google Scholar

Chuchalina, A. G., & Yasnecov, V. V. Federal guidelines on the use of medicines (formulary system). Vipusk.XVI., 1016 (Moskow., 2015).

Tajima, Y., Suda, Y. & Yano, K. A case report of SARS-CoV-2 confirmed in saliva specimens up to 37 days after onset: proposal of saliva specimens for COVID-19 diagnosis and virus monitoring. J. Infect. Chemother. 26, 10861089 (2020).

Article CAS PubMed PubMed Central Google Scholar

To, K.K.-W. et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: An observational cohort study. Lancet Infect. Dis. 20, 565574 (2020).

Article CAS PubMed PubMed Central Google Scholar

Chen, J.H.-K. et al. Evaluating the use of posterior oropharyngeal saliva in a point-of-care assay for the detection of SARS-CoV-2. Emerg. Microbes Infect. 9, 13561359 (2020).

Article ADS CAS PubMed PubMed Central Google Scholar

Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 148 (2015).

Article Google Scholar

Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.4.5. https://CRAN.R-project.org/package=DHARMa (2022).

Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82(13), 126 (2017).

Article Google Scholar

Yoav, B., Krieger, A. M. & Yekutieli, D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika. 93(3), 491507 (2006).

Article MathSciNet Google Scholar

Hassan, A. O. et al. A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell. 183, 169184 (2020).

Article CAS PubMed PubMed Central Google Scholar

Krammer, F. SARS-CoV-2 vaccines in development. Nature. 586, 516527 (2020).

Article ADS CAS PubMed Google Scholar

Mudgal, R., Nehul, S. & Tomar, S. Prospects for mucosal vaccine: Shutting the door on SARS-CoV-2. Hum. Vaccines Immunother. 16, 29212931. https://doi.org/10.1080/21645515.2020.1805992 (2020).

Article CAS Google Scholar

Cao, Y. et al. Imprinted SARS-CoV-2 humoral immunity induces convergent omicron RBD evolution. Nature. 614, 521529 (2023).

ADS CAS PubMed Google Scholar

Zhuang, Z. F. et al. Safety and immunogenicity of a live-attenuated influenza virus vector-based intranasal SARS-CoV-2 vaccine in adults: Randomised, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Respir. Med. 10, 749760 (2022).

Article PubMed PubMed Central Google Scholar

ZhuShoujie, F. et al. Safety and efficacy of the intranasal spray SARS-CoV-2 vaccine dNS1-RBD: A multicentre, randomised, double-blind, placebo-controlled, phase 3 trial November 2023. Lancet Respir. Med. 11(12), S2213-2223. https://doi.org/10.1016/S2213-2600(23)00349-1 (2023).

Article Google Scholar

Tuksin, J. et al. Intranasal administration of RBD nanoparticles confers induction of mucosal and systemic immunity against SARS-CoV-2 vaccines (Basel). 9(7), 768 (2021).

Suloeva, S. V., Kostinov, M. P. & Esman, V. N. Preventive and clinical effect of the use of IRS 19 in children born to HIV-positive women. Epidemiologiya i vakcinoprofilaktika. 1(20), 5456 (2005).

Google Scholar

Kostinov, M. P., Suloeva, S. V., Tarasova, A. A. & Lukushkina, E. F. Mucosal immunity in children with HIV infection and the possibility of its correction. ZHurnal mikrobiologii, epidemiologii i immunobiologii. 2, 7577 (2006).

Google Scholar

Ilenko, L. I. et al. Immunization with vaccines for the prevention of pneumococcal, hemophilic infection and influenza in frequently and long-term ill children with chronic and often recurrent nonspecific infectious pathology of the bronchopulmonary system. Voprosy sovremennoj pediatrii. 5(4), 2730 (2006).

Google Scholar

Foshina, E. P., Polishchuk, V. B., Kostinov, M. P. & Krasnoproshina, L. I. Correction of oral microbiocenosis disorders in children with chronic tonsillitis using topical bacterial lysate. Voprosy sovremennoj pediatrii 6(2), 107109 (2007).

Google Scholar

Chistyakova, E. G. et al. Profilaktika i lechenie ostryh respiratornyh infekcij nosoglotki u bolnyh yunosheskim artritom (Prevention and treatment of acute respiratory infections of the nasopharynx in patients with juvenile arthritis). Voprosy sovremennoj pediatrii 5(6), 4044 (2006).

Google Scholar

Kostinov, M. P. & Ababiya, I. I. Rukovodstvo po vakcinacii i immunoterapii pri LOR-patologii Guidelines for vaccination and immunotherapy in ENT pathology () (Ed. Kostinov, M.P., Ababiya, I.I.) 448 (Gruppa MDV, 2019).

Fbin, T. K., Fejrdy, P. & Csermely, P. Salivary genomics, transcriptomics and proteomics: The emerging concept of the oral ecosystem and their use in the early diagnosis of cancer and other diseases. Curr. Genomics. 9, 1121 (2008).

Article PubMed PubMed Central Google Scholar

Kryukova, N. O., Rakunova, E. B., Kostinov, M. P., Baranova, I. A. & Svitich, O. A. Cekretornyj immunoglobulin A respiratornoj sistemy i COVID-19 (Secretory immunoglobulin A of the respiratory system and COVID-19). Pulmonologiya 31(6), 792798. https://doi.org/10.18093/0869-0189-2021-31-6-792-798 (2021).

Article Google Scholar

Egorova, N. B. & Kurbatova, E. A. Immunotherapeutic concept of the use of microbial antigens in atopy and pathology associated with conditionally pathogenic microflora (using the example of the multicomponent Immunovak-VP-4 vaccine). Med. Immunol. 10(1), 1320. https://doi.org/10.15789/15630625-2008-1-13-20 (2008).

Article Google Scholar

Isho, B. et al. Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci. Immunol. 5(52), 5511. https://doi.org/10.1126/sciimmunol.abe5511 (2020).

Article Google Scholar

Fang, L., Zhou, L., Tamm, M. & Roth, M. OM-85 Broncho-Vaxom, a bacterial lysate, reduces SARS-CoV-2 binding proteins on human bronchial epithelial cells. Biomedicines. 9(11), 1. https://doi.org/10.3390/biomedicines9111544 (2021).

Article CAS Google Scholar

View original post here:

Secretory IgA and course of COVID-19 in patients receiving a bacteria-based immunostimulant agent in addition to ... - Nature.com

Related Posts
Tags: