SARS-CoV-2 booster vaccine dose significantly extends humoral immune response half-life beyond the primary series … – Nature.com

WHO Coronavirus (COVID-19) Dashboard. World Health Organization. https://covid19.who.int (2023).

Watson, O. J. et al. Global impact of the first year of COVID-19 vaccination: A mathematical modelling study. Lancet. Infect. Dis 22(9), 12931302 (2022).

Article CAS PubMed PubMed Central Google Scholar

Mesl, M. M. I. et al. Estimated number of deaths directly averted in people 60 years and older as a result of COVID-19 vaccination in the WHO European Region, December 2020 to November 2021. Eurosurveillance 26(47), 2101021 (2021).

Article PubMed PubMed Central Google Scholar

COVID-19 vaccine doses administered by manufacturer, European Union. https://ourworldindata.org/grapher/covid-vaccine-doses-by-manufacturer (2023).

Feikin, D. R. et al. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: Results of a systematic review and meta-regression. The Lancet 399(10328), 924944. https://doi.org/10.1016/s0140-6736(22)00152-0 (2022).

Article CAS Google Scholar

Milne, G. et al. Does infection with or vaccination against SARS-CoV-2 lead to lasting immunity?. Lancet Respir. Med. 9(12), 14501466. https://doi.org/10.1016/S2213-2600(21)00407-0 (2021).

Article CAS PubMed PubMed Central Google Scholar

Matveev, V. A. et al. Immunogenicity of COVID-19 vaccines and their effect on HIV reservoir in older people with HIV. iScience 26(10), 107915. https://doi.org/10.1016/J.ISCI.2023.107915 (2023).

Article ADS CAS PubMed PubMed Central Google Scholar

Korosec, C. S. et al. Long-term durability of immune responses to the BNT162b2 and mRNA-1273 vaccines based on dosage, age and sex. Sci. Rep. 12(1), 21232. https://doi.org/10.1038/s41598-022-25134-0 (2022).

Article CAS PubMed PubMed Central Google Scholar

Srivastava, K. et al. SARS-CoV-2-infection- and vaccine-induced antibody responses are long lasting with an initial waning phase followed by a stabilization phase. Immunity 57(3), 587-599.e4. https://doi.org/10.1016/j.immuni.2024.01.017 (2024).

Article CAS PubMed Google Scholar

Saad-Roy, C. M. et al. Epidemiological and evolutionary considerations of SARS-CoV-2 vaccine dosing regimes. Science 372(6540), 363370. https://doi.org/10.1126/science.abg8663 (2021).

Article ADS CAS PubMed PubMed Central Google Scholar

Slifka, M. K. & Amanna, I. How advances in immunology provide insight into improving vaccine efficacy. Vaccine 32(25), 29482957. https://doi.org/10.1016/j.vaccine.2014.03.078 (2014).

Article CAS PubMed PubMed Central Google Scholar

Widge, A. T. & Rouphael, N. Durability of Responses after SARS-CoV-2 mRNA-1273 Vaccination. N. Engl. J. Med. 384(1), 710 (2021).

Article Google Scholar

Dan, J. M. et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 371(6529), 4063. https://doi.org/10.1126/science.abf4063 (2021).

Article CAS Google Scholar

Keshavarz, B. et al. Trajectory of IgG to SARS-CoV-2 after vaccination with BNT162b2 or mRNA-1273 in an employee cohort and comparison with natural infection. Front. Immunol. 13(March), 19. https://doi.org/10.3389/fimmu.2022.850987 (2022).

Article CAS Google Scholar

Townsend, J. P., Hassler, H. B., Sah, P., Galvani, A. P. & Dornburg, A. The durability of natural infection and vaccine-induced immunity against future infection by SARS-CoV-2. Proc. Natl. Acad. Sci. U.S.A. 119(31), 18. https://doi.org/10.1073/pnas.2204336119 (2022).

Article CAS Google Scholar

Goel, R. R. et al. Distinct antibody and memory B cell responses in SARS-CoV-2 nave and recovered individuals following mRNA vaccination. Sci. Immunol. 6(58), 120. https://doi.org/10.1126/sciimmunol.abi6950 (2021).

Article Google Scholar

Stankov, M. V. et al. Humoral and cellular immune responses against severe acute respiratory syndrome coronavirus 2 variants and human coronaviruses after single BNT162b2 vaccination. Clin. Infect. Dis. 2021, 19. https://doi.org/10.1093/cid/ciab555 (2021).

Article CAS Google Scholar

Bergamaschi, C. et al. Systemic IL-15, IFN-(gamma), and IP-10/CXCL10 signature associated with effective immune response to SARS-CoV-2 in BNT162b2 mRNA vaccine recipients. Cell Rep. 36(6), 109504. https://doi.org/10.1016/j.celrep.2021.109504 (2021).

Article CAS PubMed PubMed Central Google Scholar

Camara, C. et al. Differential effects of the second SARS-CoV-2 mRNA vaccine dose on T cell immunity in nave and COVID-19 recovered individuals. BioRxiv 2021, 436441. https://doi.org/10.1101/2021.03.22.436441 (2021).

Article CAS Google Scholar

Suthar, M. S. et al. Durability of immune responses to the BNT162b2 mRNA vaccine. Medicine 3(1), 2527. https://doi.org/10.1016/j.medj.2021.12.005 (2022).

Article MathSciNet CAS Google Scholar

Mateus, J. et al. Low-dose mRNA-1273 COVID-19 vaccine generates durable memory enhanced by cross-reactive T cells. Science 374(6566), eabj9853. https://doi.org/10.1126/science.abj9853 (2021).

Article CAS PubMed PubMed Central Google Scholar

Cohen, K. W. et al. Longitudinal analysis shows durable and broad immune memory after SARS-CoV-2 infection with persisting antibody responses and memory B and T cells. Cell Rep. Med. 2(7), 100354. https://doi.org/10.1016/j.xcrm.2021.100354 (2021).

Article CAS PubMed PubMed Central Google Scholar

Mwimanzi, F. et al. Older adults mount less durable humoral responses to two doses of COVID-19 mRNA vaccine but strong initial responses to a third dose. J. Infect. Dis. 226(6), 983994. https://doi.org/10.1093/infdis/jiac199 (2022).

Article CAS PubMed PubMed Central Google Scholar

Brockman, M. A. et al. Reduced magnitude and durability of humoral immune responses to COVID-19 mRNA vaccines among older adults. J. Infect. Dis. 225(7), 11291140. https://doi.org/10.1093/infdis/jiab592 (2022).

Article CAS PubMed Google Scholar

Mwimanzi, F. et al. Impact of age and severe acute respiratory syndrome coronavirus 2 breakthrough infection on humoral immune responses after three doses of coronavirus disease 2019 mRNA vaccine. Open Forum Infect. Dis. 10(3), 111. https://doi.org/10.1093/ofid/ofad073 (2023).

Article CAS Google Scholar

Gholami, S. et al. A mathematical model of protein subunits COVID-19 vaccines. Math. Biosci. 358, 108970. https://doi.org/10.1016/J.MBS.2023.108970 (2023).

Article MathSciNet CAS PubMed PubMed Central Google Scholar

Farhang-sardroodi, S. et al. Analysis of host immunological response of adenovirus-based COVID-19 vaccines. Vaccines 9(8), 861 (2021).

Article CAS PubMed PubMed Central Google Scholar

Moyles, I. R., Korosec, C. S. & Heffernan, J. M. Determination of significant immunological timescales from mRNA-LNP-based vaccines in humans. J. Math. Biol. 86(86), 141. https://doi.org/10.1007/s00285-023-01919-3 (2023).

Article MathSciNet Google Scholar

Prez-Als, L. et al. Modeling of waning immunity after SARS-CoV-2 vaccination and influencing factors. Nat. Commun. 13(1), 111. https://doi.org/10.1038/s41467-022-29225-4 (2022).

Article CAS Google Scholar

Lin, J. et al. Longitudinal assessment of SARS-CoV-2-specific T cell cytokine-producing responses for 1 year reveals persistence of multicytokine proliferative responses, with greater immunity associated with disease severity. J. Virol. 96(13), e00509-22. https://doi.org/10.1128/jvi.00509-22 (2022).

Article CAS PubMed PubMed Central Google Scholar

Korosec, C. S. et al. Multiple cohort study of hospitalized SARS-CoV-2 in-host infection dynamics: Parameter estimates, identifiability, sensitivity and the eclipse phase profile. J. Theor. Biol. 564, 111449. https://doi.org/10.1016/j.jtbi.2023.111449 (2023).

Article PubMed PubMed Central Google Scholar

Korosec, C. S., Wahl, L. M. & Heffernan, J. M. Within-host evolution of SARS-CoV-2: How often are de novo mutations transmitted from symptomatic infections?. Virus Evolution 10(1), veae006. https://doi.org/10.1093/ve/veae00 (2024).

Article PubMed PubMed Central Google Scholar

Antony. Monolix version 2016R1. http://lixoft.com/products/monolix2016/ (France, Lixoft SAS, 2016).

McKight, P. E. & Najab, J. Kruskal-wallis test. Corsini Encycl. Psychol. 2010, 1 (2010).

Google Scholar

Yoav, B. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple hypothesis testing. J. R. Stat. Soc. B 57(1), 289300 (1995).

Google Scholar

Friedman, J., Hastie, T., & Tibshirani, R. et al. glmnet: Lasso and Elastic-Net Regularized Generalized Linear Models. https://CRAN.R-project.org/package=glmnet. R package version 4.1-8 (2023).

Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1 (2010).

Article PubMed PubMed Central Google Scholar

Simon, N., Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for coxs proportional hazards model via coordinate descent. J. Stat. Softw. 39(5), 1 (2011).

Article PubMed PubMed Central Google Scholar

Tibshirani, R. et al. Strong rules for discarding predictors in lasso-type problems. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 74(2), 245266 (2012).

Article MathSciNet Google Scholar

Rudberg, A.-S. et al. SARS-CoV-2 exposure, symptoms and seroprevalence in healthcare workers in Sweden. Nat. Commun. 11(1), 5064. https://doi.org/10.1038/s41467-020-18848-0 (2020).

Article ADS CAS PubMed PubMed Central Google Scholar

OBrien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41(5), 673690. https://doi.org/10.1007/s11135-006-9018-6 (2007).

Article Google Scholar

Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1(1), 314. https://doi.org/10.1111/j.2041-210X.2009.00001.x (2010).

Article Google Scholar

Liang, X. M. et al. A third dose of an inactivated vaccine dramatically increased the levels and decay times of anti-SARS-CoV-2 antibodies, but disappointingly declined again: A prospective, longitudinal, cohort study at 18 serial time points over 368 days. Front. Immunol. 13(April), 19. https://doi.org/10.3389/fimmu.2022.876037 (2022).

Article ADS CAS Google Scholar

Robinson, M. J. et al. Long-lived plasma cells accumulate in the bone marrow at a constant rate from early in an immune response. Science immunology 7(76), eabm8389. https://doi.org/10.1126/sciimmunol.abm8389 (2022).

Article PubMed Google Scholar

Castruita, J. A. S. et al. SARS-CoV-2 spike mRNA vaccine sequences circulate in blood up to 28 days after COVID-19 vaccination. APMIS 131(3), 128132. https://doi.org/10.1111/apm.13294 (2023).

Article CAS PubMed PubMed Central Google Scholar

Golan, Y. et al. Evaluation of messenger RNA from COVID-19 BTN162b2 and mRNA-1273 vaccines in human milk. JAMA Pediatr. 175(10), 10691071. https://doi.org/10.1001/jamapediatrics.2021.1929 (2021).

Article PubMed PubMed Central Google Scholar

Fertig, T. E. et al. Vaccine mRNA can be detected in blood at 15 days post-vaccination. Biomedicines. 10(7), 1538 (2022).

Aldridge, R. W. et al. SARS-CoV-2 antibodies and breakthrough infections in the Virus Watch cohort. Nat. Commun. 13, 4869. https://doi.org/10.1038/s41467-022-32265-5 (2022).

Article ADS CAS PubMed PubMed Central Google Scholar

Trevisan, C. et al. Sex differences in the efficacy and safety of SARS-CoV-2 vaccination in residents of long-term care facilities: Insights from the GeroCovid Vax study. Internal Emerg. Med. 2023, 111 (2023).

Google Scholar

Zhang, F. et al. Adaptive immune responses to SARS-CoV-2 infection in severe versus mild individuals. Signal Transd. Target. Therapy 5, 1. https://doi.org/10.1038/s41392-020-00263-y (2020).

Article CAS Google Scholar

Park, M. D. Sex differences in immune responses in COVID-19. Nat. Rev. Immunol. 20(8), 461 (2020).

Article CAS PubMed PubMed Central Google Scholar

Gaeta, A. et al. Anti-N SARS-CoV-2 assays for evaluation of natural viral infection. J. Immunol. Methods 518, 113486. https://doi.org/10.1016/j.jim.2023.113486 (2023).

Article CAS PubMed PubMed Central Google Scholar

Fischinger, S., Boudreau, C. M., Butler, A. L., Streeck, H. & Alter, G. Sex differences in vaccine-induced humoral immunity. Semin. Immunopathol. 41(2), 239249. https://doi.org/10.1007/s00281-018-0726-5 (2019).

Read the original:

SARS-CoV-2 booster vaccine dose significantly extends humoral immune response half-life beyond the primary series ... - Nature.com

Related Posts
Tags: