Priming antibody responses to the fusion peptide in rhesus macaques – Nature.com

National Center for Immunization and Respiratory Diseases. General recommendations on immunization recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep. 60, 164 (2011).

Google Scholar

Watson, J. C. et al. An evaluation of measles revaccination among school-entry-aged children. Pediatrics 97, 613618 (1996).

Article CAS PubMed Google Scholar

Poland, G. A. et al. Measles reimmunization in children seronegative after initial immunization. JAMA 277, 11561158 (1997).

Article CAS PubMed Google Scholar

Banatvala, J. E. & Van Damme, P. Hepatitis B vaccine do we need boosters? J. Viral Hepat. 10, 16 (2003).

Article CAS PubMed Google Scholar

Miner, M. D., Corey, L. & Montefiori, D. Broadly neutralizing monoclonal antibodies for HIV prevention. J. Int AIDS Soc. 24, e25829 (2021).

Article CAS PubMed PubMed Central Google Scholar

Corey, L. et al. Two randomized trials of neutralizing antibodies to prevent HIV-1 acquisition. N. Engl. J. Med 384, 10031014 (2021).

Article CAS PubMed PubMed Central Google Scholar

Walker, B. D. The AMP Trials - A glass half full. N. Engl. J. Med 384, 10681069 (2021).

Article PubMed Google Scholar

Klein, F. et al. Somatic mutations of the immunoglobulin framework are generally required for broad and potent HIV-1 neutralization. Cell 153, 126138 (2013).

Article CAS PubMed PubMed Central Google Scholar

Kwong, P. D. & Mascola, J. R. Human antibodies that neutralize HIV-1: identification, structures, and B cell ontogenies. Immunity 37, 412425 (2012).

Article CAS PubMed PubMed Central Google Scholar

Andrabi, R. et al. Identification of common features in prototype broadly neutralizing antibodies to HIV envelope V2 Apex to facilitate vaccine design. Immunity 43, 959973 (2015).

Article CAS PubMed PubMed Central Google Scholar

Verkoczy, L., Kelsoe, G., Moody, M. A. & Haynes, B. F. Role of immune mechanisms in induction of HIV-1 broadly neutralizing antibodies. Curr. Opin. Immunol. 23, 383390 (2011).

Article CAS PubMed PubMed Central Google Scholar

Sather, D. N. et al. Factors associated with the development of cross-reactive neutralizing antibodies during human immunodeficiency virus type 1 infection. J. Virol. 83, 757769 (2009).

Article CAS PubMed Google Scholar

Burton, D. R. & Hangartner, L. Broadly neutralizing antibodies to HIV and their role in vaccine design. Annu Rev. Immunol. 34, 635659 (2016).

Article CAS PubMed PubMed Central Google Scholar

Kepler, T. B. et al. Immunoglobulin gene insertions and deletions in the affinity maturation of HIV-1 broadly reactive neutralizing antibodies. Cell Host Microbe 16, 304313 (2014).

Article CAS PubMed PubMed Central Google Scholar

Cirelli, K. M. et al. Slow delivery immunization enhances HIV neutralizing antibody and germinal center responses via modulation of immunodominance. Cell 177, 11531171.e28 (2019).

Article CAS PubMed PubMed Central Google Scholar

Hu, J. K. et al. Murine antibody responses to cleaved soluble HIV-1 envelope trimers are highly restricted in specificity. J. Virol. 89, 1038310398 (2015).

Article CAS PubMed PubMed Central Google Scholar

Pauthner, M. et al. Elicitation of robust Tier 2 neutralizing antibody responses in nonhuman primates by HIV envelope trimer immunization using optimized approaches. Immunity 46, 10731088.e6 (2017).

Article CAS PubMed PubMed Central Google Scholar

Tam, H. H. et al. Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination. Proc Natl Acad Sci USA. 113, E6639E6648 (2016).

Binley, J. M. et al. Profiling the specificity of neutralizing antibodies in a large panel of plasmas from patients chronically infected with human immunodeficiency virus type 1 subtypes B and C. J. Virol. 82, 1165111668 (2008).

Article CAS PubMed PubMed Central Google Scholar

West, A. P. et al. Computational analysis of anti-HIV-1 antibody neutralization panel data to identify potential functional epitope residues. Proc. Natl Acad. Sci. USA 110, 1059810603 (2013).

Article CAS PubMed PubMed Central Google Scholar

Burton, D. R. et al. A blueprint for HIV vaccine discovery. Cell Host Microbe 12, 396407 (2012).

Article CAS PubMed PubMed Central Google Scholar

Hraber, P. et al. Prevalence of broadly neutralizing antibody responses during chronic HIV-1 infection. AIDS 28, 163169 (2014).

Article CAS PubMed Google Scholar

Kong, R. et al. Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science 352, 828833 (2016).

Article CAS PubMed PubMed Central Google Scholar

Cheng C., et al. Immune monitoring reveals fusion peptide priming to imprint cross-clade HIV-neutralizing responses with a characteristic early B cell signature. Cell Rep. 32, 107981 (2020).

Van Gils, M. J. et al. An HIV-1 antibody from an elite neutralizer implicates the fusion peptide as a site of vulnerability. Nat. Microbiol. 2, 16199 (2016).

Article PubMed PubMed Central Google Scholar

Cottrell, C. A. et al. Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. PLoS Pathog. 16, e1008753 (2020).

Article CAS PubMed PubMed Central Google Scholar

Nogal, B. et al. Mapping polyclonal antibody responses in non-human primates vaccinated with HIV env trimer subunit vaccines. Cell Rep. 30, 37553765.e7 (2020).

Article CAS PubMed PubMed Central Google Scholar

Lee, J. H. et al. Long-primed germinal centres with enduring affinity maturation and clonal migration. Nature 609, 9981004 (2022).

Article CAS PubMed PubMed Central Google Scholar

Kong, R. et al. Antibody lineages with vaccine-induced antigen-binding hotspots develop broad HIV neutralization. Cell 178, 567584.e19 (2019).

Article CAS PubMed PubMed Central Google Scholar

Xu, K. et al. Epitope-based vaccine design yields fusion peptide-directed antibodies that neutralize diverse strains of HIV-1. Nat. Med. 24, 857867 (2018).

Article CAS PubMed PubMed Central Google Scholar

Torrents de la Pea, A. et al. Improving the immunogenicity of native-like HIV-1 envelope trimers by hyperstabilization. Cell Rep. 20, 18051817 (2017).

Article PubMed PubMed Central Google Scholar

Wagh, K. et al. Completeness of HIV-1 envelope glycan shield at transmission determines neutralization breadth. Cell Rep. 25, 893908.e7 (2018).

Article CAS PubMed PubMed Central Google Scholar

McCoy, L. E. et al. Holes in the glycan shield of the native HIV envelope are a target of trimer-elicited neutralizing antibodies. Cell Rep. 16, 23272338 (2016).

Article CAS PubMed PubMed Central Google Scholar

Klasse, P. J. et al. Sequential and simultaneous immunization of rabbits with HIV-1 envelope Glycoprotein SOSIP.664 trimers from Clades A, B and C. PLoS Pathog. 12, e1005864 (2016).

Article CAS PubMed PubMed Central Google Scholar

Derking, R. et al. Enhancing glycan occupancy of soluble HIV-1 envelope trimers to mimic the native viral spike. Cell Rep. 35, 108933 (2021).

Article CAS PubMed PubMed Central Google Scholar

Yang, Y. R. et al. Autologous antibody responses to an HIV envelope glycan hole are not easily broadened in rabbits. J. Virol. 94, e0186119 (2020).

Article PubMed PubMed Central Google Scholar

Lee, J. H. et al. A broadly neutralizing antibody targets the dynamic HIV Envelope Trimer Apex via a long, rigidified, and anionic -Hairpin structure. Immunity 46, 690702 (2017).

Article CAS PubMed PubMed Central Google Scholar

Walker, L. M. et al. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477, 466470 (2011).

Article CAS PubMed PubMed Central Google Scholar

Marasco, W. A. et al. Characterization of the cDNA of a broadly reactive neutralizing human anti-gp120 monoclonal antibody. J. Clin. Invest 90, 14671478 (1992).

Article CAS PubMed PubMed Central Google Scholar

Blattner, C. et al. Structural delineation of a quaternary, cleavage-dependent epitope at the gp41-gp120 interface on intact HIV-1 Env trimers. Immunity 40, 669680 (2014).

Article CAS PubMed PubMed Central Google Scholar

Heath, P. T. et al. Safety and Efficacy of NVX-CoV2373 Covid-19 Vaccine. N. Engl. J. Med 385, 11721183 (2021).

Article CAS PubMed Google Scholar

Lvgren Bengtsson, K., Morein, B. & Osterhaus, A. D. ISCOM technology-based Matrix MTM adjuvant: success in future vaccines relies on formulation. Expert Rev. Vaccines 10, 401403 (2011).

Article PubMed Google Scholar

Hebeis, B. J. et al. Activation of virus-specific memory B cells in the absence of T cell help. J. Exp. Med 199, 593602 (2004).

Article CAS PubMed PubMed Central Google Scholar

Lutz, J. et al. Reactivation of IgG-switched memory B cells by BCR-intrinsic signal amplification promotes IgG antibody production. Nat. Commun. 6, 8575 (2015).

Article CAS PubMed PubMed Central Google Scholar

Van Hoeven, N. et al. A formulated TLR7/8 agonist is a flexible, highly potent and effective adjuvant for pandemic influenza vaccines. Sci. Rep. 7, 46426 (2017).

Article PubMed PubMed Central Google Scholar

Silva, M. et al. A particulate saponin/TLR agonist vaccine adjuvant alters lymph flow and modulates adaptive immunity. Sci. Immunol. 6, eabf1152 (2021).

Article CAS PubMed PubMed Central Google Scholar

Havenar-Daughton, C. et al. Direct probing of germinal center responses reveals immunological features and bottlenecks for neutralizing antibody responses to HIV Env Trimer. Cell Rep. 17, 21952209 (2016).

Article CAS PubMed PubMed Central Google Scholar

Bianchi, M. et al. Electron-Microscopy-based epitope mapping defines specificities of polyclonal antibodies elicited during HIV-1 BG505 envelope trimer immunization. Immunity 49, 288300.e8 (2018).

Article CAS PubMed PubMed Central Google Scholar

Antanasijevic, A. et al. Polyclonal antibody responses to HIV Env immunogens resolved using cryoEM. Nat. Commun. 12, 4817 (2021).

Article CAS PubMed PubMed Central Google Scholar

Havenar-Daughton, C., Lee, J. H. & Crotty, S. Tfh cells and HIV bnAbs, an immunodominance model of the HIV neutralizing antibody generation problem. Immunol. Rev. 275, 4961 (2017).

Article CAS PubMed Google Scholar

Nogal, B. et al. HIV envelope trimer-elicited autologous neutralizing antibodies bind a region overlapping the N332 glycan supersite. Sci. Adv. 6, eaba0512 (2020).

Article CAS PubMed PubMed Central Google Scholar

Read more:

Priming antibody responses to the fusion peptide in rhesus macaques - Nature.com

Related Posts
Tags: