Optimizing influenza vaccine strategies with nanoparticle immunization – News-Medical.Net

To offer cross-protection against diverse influenza virus variants, nanoparticle vaccines can produce pivotalcellular and mucosal immune responses that enhance vaccine efficacy and broaden protection, according to a study by researchersin theInstitute for Biomedical SciencesatGeorgia State University.

The study, published in the journal Nature Communications,offersvaluable insights into tailoring immunization strategies to optimize influenza vaccine effectiveness. To alleviate the significant public health burden of influenza epidemics and occasional pandemics, it's essential to enhance influenza vaccine cross-protection, according to the authors.

While the Centers for Disease Control and Prevention (CDC) recommends annual influenza vaccination, current seasonal influenza vaccines typically provide strain-specific and short-lived immunity. Seasonal influenza vaccines offer limited cross-protection against antigenically diverse virus variants and provide no defense against sporadic influenza pandemics, the authors explained.

Developing effective influenza vaccines or vaccination strategies that can confer cross-protection against variant influenza viruses is a high priority to mitigate the public health consequences of influenza."

Dr.Chunhong Dong, first author of the study and postdoctoral fellowin theInstitute for Biomedical Sciences at Georgia State

In the study, the researchers investigated the effects of immunization strategies on the generation of cross-protective immune responses in female mice using mRNA lipid nanoparticle (LNP) and protein-based polyethyleneimine-HA/CpG (PHC) nanoparticle vaccines targeting influenza hemagglutinin. The mice were immunized with either intramuscular mRNA LNP or intranasal PHC vaccines in a typical prime-plus-boost regimen.A variety ofsequential immunization strategies were includedin this study for parallel comparison.

"We demonstrated that cellular and mucosal immune responses are pivotal correlates of cross-protection against influenza,"said Dr. BaozhongWang,senior author of the study and a Distinguished University Professor in the Institute for Biomedical Sciences at Georgia State."Notably, intranasal PHC immunization outperforms its intramuscular counterpart in inducing mucosal immunity and conferring cross-protection. Sequential mRNA LNP prime and intranasal PHC boost demonstrated optimal cross-protection against antigenically drifted and shifted influenza strains."

The study highlights the importance of immunization orders andindicates thatin a sequential immunization, an mRNA vaccineprimingplays an importantrole in steeringtheTh1/Th2immune responses. Also, the intranasal PHC boost iscrucialto the induction of mucosal immunity, Wang said.

Additional authors of the study includeWandi Zhu, Lai Wei, Joo Kyung Kim, Yao Ma and Sang-Moo Kangof theInstitute for Biomedical Sciences atGeorgia State.

The study is funded by the National Institutes of Health (NIH)/National Institute of Allergy and Infectious Diseases (NIAID).

Source:

Journal reference:

Dong, C., et al. (2024). Enhancing cross-protection against influenza by heterologous sequential immunization with mRNA LNP and protein nanoparticle vaccines.Nature Communications. doi.org/10.1038/s41467-024-50087-5.

See the original post here:

Optimizing influenza vaccine strategies with nanoparticle immunization - News-Medical.Net

Related Posts
Tags: