Introduction
India has been struck hard by the second wave of the COVID-19 pandemicdaily cases and deaths peaked at more than 400,000 cases and 4,000 deaths, respectively, almost four to five times higher than the peak number of cases and deaths in the first wave.1 The second wave was largely attributed to complacency by the Indian government.2 As important as this may have been, it is crucial to examine the role of the media during the pandemic. In particular, what were the discussion topics on the eve of the second wave, and was COVID-19 a fading topic of discussion when the tragedy struck? In this paper, we answer this question and discuss how inadequate media coverage may have slowed Indias COVID-19 response.
News media is an important institution in a democracy. It is instrumental in conveying information to people and drawing the governments attention to issues of concern, and provides a platform for advocacy and criticism of policies of the government in power.3 In the context of a pandemic, the medias role becomes even more significant: It can be a vital source to identify early outbreaks, and it can inform the public about non-pharmaceutical interventions (NPIs) like maintaining physical distance, hand hygiene, wearing a mask, etc. to contain the spread of the disease and limit its impact.4 Although NPIs and government-imposed travel restrictions can be burdensomerequiring significant alterations in human behavior, which is difficult to maintain over extended periods5the media can ensure compliance with these important measures by educating the public on their effectiveness at fighting diseases and preventing additional outbreaks.
Furthermore, research on epidemics has shown a cyclical behavioral response with respect to the disease; that is, more disease leads to more demand for self-protection, in turn leading to less disease; however, this results in less self-protection, which then leads to more disease.6 Unfortunately, this implies that until a sufficiently large number of people are vaccinated or protected from the disease, an epidemic is likely to come in waves. Therefore, it becomes imperative for the media and the government to repeatedly, perhaps in a novel manner, convey messages to the public regarding NPIs to the public to lessen the impact of the disease, primarily when the prevalence of the disease is in a downward trend.
This paper uses data from Twitter for 20 English-language media outlets across print, digital, and broadcasting and uses structural topic modeling (STM)7 to identify discussion topics and the evolution of these topics during the pandemic from March 2020 to April 2021. Our primary objective was to understand whether, on the eve of the second wave in India, topics related to COVID-19in contrast to other topics of discussion, such as politics, protests, and entertainmentwere a fading topic of discussion.
In the Indian context, this is the first paper to our knowledge that relies on Twitter data to look at the role of media during the pandemic using STM methods,8 a machine-assisted text reading tool. Our article complements the literature that has explored how mass media in post-independence India forced the Indian government to respond to threats of famine; as a result of this public pressure, Indiadespite its high level of povertyhas not had a large-scale famine post-independence.9 Moreover, research has also shown that state governments with a higher circulation of newspapers were more responsive to a decline in food production or damage caused to the crops by flooding.10 These papers highlight how media can draw government attention to issues of grave concern, especially for lower-income and historically disadvantaged groups and areas.
Our data consists of tweets posted by 20 English-language media outlets11 from March 1, 2020 through April 30, 2021. Twint, an advanced Twitter scraping tool written in Python, was used to scrape all the tweets posted by the media outlets for the given dates. A total of 1,253,531 tweets were downloaded, of which the media outlet TIMES NOW, with more than 10 million followers, accounted for 156,523 (12.5%) of the tweets (see table 1). The data include the date and time of the tweet, the name of the media outlet, the actual content of the tweet, and the number of the retweets, likes, and replies for each tweet.
To identify tweets for this study, the data were analyzed to identify if COVID or coronavirus was mentioned in the tweet. If it was mentioned, then the tweet was labeled as a COVID-19 tweet. We then ran a logistic regression of the following form:
To get the proportion of tweets labeled as a COVID-19 tweet each month, we compute the average predicted probabilities for each month, using the margins command in STATA MP 16.1.
The second part of our analysis involves text mining of the tweets to discover topics associated with the tweet and how these topics evolve for different media outlets. We used STM to analyze the texts of tweets for each media outlet are analyzed using machine-assisted reading of text corpora.12
The STM model builds on the probabilistic topic models such as the Latent Dirichlet Allocation,13 Correlated Topic Models,14 and extensions of these models.15 However, the critical innovation in STM is to relate the topic models with information associated with the document or the tweet. In our paper, this information relates to the media outlet and the month they posted the tweet. In other words, STM, while discovering the latent topics in the tweet, also uses the information associated with the tweet, such as the media outlet that posted the tweet and the date when the tweet was posted.
Moreover, our structural model also allows the evolution of the topic to vary with each of the media outlets. Our purpose for this is to differentiate the topics of discussion across different media outlets. In particular, in our STM models, topic prevalence takes the following structural form:
In this, i is the topic of discussion, and the effect of the month on topic prevalence is estimated with a spline. The media outlet is interacted with the spline of the month to allow for topic prevalence to vary for the media outlet. Since STM can be computationally challenging, we select 10% of the population of tweets. The tweets were selected based on stratified random sampling without replacement. In particular, for each month, we randomly selected 10% of every media outlets tweets. A total of 125,606 tweets were part of the STM analysis (see table 1). Before the STM analysis, we prepared the data by removing infrequent words; in our analysis, if a word appears only in one tweet, it is dropped from the vocabulary. Based on this, a total of 107 (<0.1%) tweets were dropped. Our final data for the STM analysis was 125,499 tweets with a vocabulary of 29,999 words. The default initialization that we used was spectral, primarily because of its stability.
Next, we took the sample of 125,499 tweets and labeled each tweet with the dominant topic of discussion based on the STM analysis. We then made five categories based on the topic of discussion related to (1) coronavirus, case, vaccine, (2) China, border, import, (3) farmer, protest, law, Delhi, (4) elections, poll, assembly, and (5) others. We created a count of engagement for each tweet, which is the sum of retweets, likes, and replies. We then regress this count over the months while controlling for the media outlet, using negative binomial regression. In particular, we run the following regression:
Here, nbreg is negative binomial regression and subscript i is the index for the tweet.
Our model selection for the number of topics was based on a data-driven approach. We performed several automated diagnostic tests, such as computation of held-out likelihood and residual analysis and compared the models with the varying topic along each of these criteria. In addition, we also report results associated with semantic-coherence for each of the models.16 There is always a possibility in STMs to produce topics that would be judged nonsensical by human domain experts. To minimize this, we selected the model that had fewer outlier topics based on semantic-coherence and also had higher exclusivity of the topics. Exclusivity of topic refers to words that have high overall frequency but at the same time are exclusive to the topic. Based on our diagnostic tests, we selected a model with 40 topics.
We should note that possible limitations of our analysis are that these data are limited to English media outlets and their messages on Twitter. The stories covered on Twitter could be very different from stories covered in print or discussed on news broadcasts, so they are not representative of the overall media discussion. In addition, the audience of the English-language media outlets on social media platforms could be different, for example, from the audience on other vernacular media outlets. It could be possible that other vernacular media outlets have a higher coverage of COVID-19 compared to the English-language media outlets.
Based on the logistic regression, we found that the average proportion of daily tweets that mention covid or coronavirus was lowest in February 2021. It fell from a high of 52.9% (95% confidence interval [CI]; 52.6% to 53.3%) in April 2020 to 9.2% (95% CI; 9.0% to 9.4%) in February 2021. This pattern was observed across all the media outlets (see figure 1).
Our next set of results relates to the STM analysis. The objective was to exploit the machine-assisted reading of the tweets across all the media outlets to discover the topics of discussion and how each of these topics evolved. Based on model diagnostics (see appendix 1 for a discussion on this), a 40-topic model was estimated with spectral initialization using STM. For our paper, we focus on general topics that relate to (a) COVID-19, coronavirus, vaccine, (b) elections and politics, (c) farmers protests and agitations, and (d) foreign affairs that include border issues with China.
Next, we plotted topic prevalence as a smooth function of time, which in our setting is the month (the topic prevalence model was related to the spline of the month), holding the media outlet at the sample median (see figure 2). Our results indicate that topics related to COVID-19 were the dominant topics of discussion from March 2020 until mid-May 2020; from then until the middle of June 2020, the conversation shifted to foreign affairs and border-related issues with China. Beginning in mid-September 2020, the topic of discussion turned to elections and farmers protests. State assembly elections in Bihar17 dominated the debate from mid-September until December 2020, when farmers protests began to dominate the discussion, even though there was an influx of debate related to COVID-19 vaccination.
From early February 2021, state elections (in West Bengal, Tamil Nadu, and Puducherry)18 dominated the conversation (see figure 2). Next, we conducted a similar analysis that allowed for topic prevalence to differ across media outlets (see figure 3). Topic prevalence varied across media outlets; for example, for public news agencies such as DD News and PIB India, the dominant topic of discussion in the initial months was related to COVID-19 and coronavirus. However, over time, this declined and shifted to the issues related to finance and projects. For private media outlets in broadcasting, such as IndiaToday, NDTV, TIMES NOW, the dominant topic in the early months of the pandemic was related to COVID-19 and coronavirus; however, in subsequent months, border-related issues with China, elections, and farmers protests gained prominence. A similar pattern was observed for print media outlets such as The Hindu, The Indian Express, and The Times of India. However, a common feature across all media outlets was that, on the eve of the second wave (the period between mid-February 2021 and mid-March 2021), topics related to COVID-19 and coronavirus had insignificant coverage relative to other topics; the news instead was focused on topics like farmers protests, India-China border issues, state assembly elections, and cricket.
For the next part of the analysis, we study the response that a particular topic elicits from the audience in the form of count of retweets, likes, and replies. In particular, in our sample of 125,499 tweets used for the STM analysis, we label each tweet with the dominant topic of discussion. We then made five categories based on the topic of discussion related to (1) COVID-19, coronavirus, case, and vaccine, (2) China, border, import, (3) farmer, protest, law, Delhi, (4) elections, poll, assembly, and (5) others. Our results indicate that COVID-19 related topics had the least engagement in terms of the number of retweets, likes, and replies compared to other issuesand this trend is consistent across the entire timeline of the study. Issues related to China, elections, and farmers protests had significantly higher counts of retweets, likes, and replies (see figure 4). This is an important finding, as it shows that, compared to other topics, there is a relative lack of engagement on (or interest in) topics related to COVID-19 among Twitter users.
Government complacency was identified as a critical factor for the surge of COVID-19 cases in India during the second wave.19 However, little attention has been paid to the activities of the media on the eve of the second COVID-19 surge, where peak daily cases and deaths were four to five times larger than the peak in the first wave.20 In this paper, using structural topic models based on machine-assisted text reading of tweets, we identify topics of discussion that were making waves in the time of the pandemic in Indian media, and particularly the period immediately before the second surge in COVID-19 cases and deaths. Our results show that discussions related to COVID-19 were at the lowest ebb on the eve of the second wave of the pandemic. Media attention was diverted from COVID-19 to topics related to farmers protests, elections, and entertainment (such as cricket matches in the Indian Premier League). This was true across all media outletsprint, broadcasting, and digital, both private and publicwith varying agendas.
Media is an important institution in a democracy. It conveys information to the public and draws the governments attention to issues that concern the public. It acts as a bridge between the people and the government. During a global pandemic that has devasted lives and livelihoods, the medias role becomes crucial. News institutions are essential to bringing the governments attention to early outbreaks while also nudging, using novel messaging, the tired public to adopt and sustain potentially burdensome NPIs, such as maintaining physical distance and hand hygiene, wearing a mask, etc. to contain the spread of the disease and limit its impact.21 Unfortunately, on the eve of the second COVID-19 surge, discussion related to COVID-19 was at its lowest point across all the media outlets. Moreover, COVID-19 related discussions attracted the least attention on Twitter compared to other topics, such as farmers protests, elections, court cases, and police activity.
Our paper has important implications for the future role of media in the Indian context. As we move forward, it is evident that new variants of the virus with varying transmissibility will emerge. There is also limited evidence on the efficacy of existing vaccines on newer variants.22 Therefore, NPIs will continue to play an important role in containing the deadly impact of the virus.23 Given its vast networks of reporters, the media could play a more proactive role in identifying early outbreaks. Secondly, along with the government, the media would need to innovate its messaging regarding the NPIs to the broader public because NPIs are costly to sustain. Thirdly, research on epidemics has shown a cyclical behavioral response with respect to the disease; that is, more disease leads to more demand for self-protection, in turn leading to less disease; however, this results in less self-protection, and this behavior change then leads to more disease.24
In light of this, it becomes imperative for both media institutions and governments to reinforce the messaging regarding the pandemic when the prevalence of the disease is at its lowestwhich is just the opposite of what we observed in this analysis. Even though media is free to cover any topic in a democracy, we argue that it has to play an essential role during a pandemic to limit the diseases impact on people. This did not happen on the eve of the second wave, and the lack of relevant information likely intensified the disastrous impact of the wave.
Our model selection for the number of topics was based on a data-driven approach. We performed several automated diagnostic tests, such as computation of held-out likelihood and residual analysis and compared the models with the varying topics along each of these criteria. In addition, we also report results associated with semantic-coherence for each of the models.25 There is always a possibility of statistical topic models to produce topics that would be judged nonsensical by human domain experts. To minimize this probability, we selected the model with fewer topics that were outliers based on the semantic-coherence and at the same time had higher exclusivity of the topics. Exclusivity of topic refers to words that have high overall frequency but at the same time are exclusive to the topic. Based on our diagnostic tests, we selected a model with 40 topics.
The Brookings Institution is a nonprofit organization devoted to independent research and policy solutions. Its mission is to conduct high-quality, independent research and, based on that research, to provide innovative, practical recommendations for policymakers and the public. The conclusions and recommendations of any Brookings publication are solely those of its author(s), and do not reflect the views of the Institution, its management, or its other scholars.
The findings, interpretations, and conclusions posted in this piece are not influenced by any donation. Brookings recognizes that the value it provides is in its absolute commitment to quality, independence, and impact. Activities supported by its donors reflect this commitment.
See original here:
Making waves in India: Media and the COVID-19 pandemic - Brookings Institution
- Coronavirus Scam Alert: Watch Out For These Risky COVID-19 Websites And Emails - Forbes [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- COVID19: Broome County Executive expected to sign executive orders on virus - WBNG-TV [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Houston-based company ready to test COVID-19 'vaccine candidate,' but doesn't have the funds - KHOU.com [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- COVID19 Mesa County Public Health [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Coronavirus Disease 2019 (COVID-19) | SCDHEC [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Coronavirus disease 2019 - Wikipedia [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Hackers are jumping on the COVID-19 pandemic to spread malware - TechCrunch [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- COVID-19 can last a few days on surfaces, according to new experiment findings - ABC News [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- The Guardian view on the UKs Covid-19 response: confused and hesitant - The Guardian [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- The COVID-19 Coronavirus Pandemic Highlights The Importance Of Scientific Expertise - Forbes [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- WHO Expert: Aggressive Action Against Coronavirus Cuts Down On Spread : Goats and Soda - NPR [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- 2 new cases of COVID-19 at Chicago schools - WGN TV Chicago [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Will Gargling with Salt Water or Vinegar 'Eliminate' the COVID-19 Coronavirus? - Snopes.com [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Worried about dying from COVID-19? You might be a millennial | TheHill - The Hill [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Startups developing tech to combat COVID-19 urged to apply for fast-track EU funding - TechCrunch [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Why do dozens of diseases wax and wane with the seasonsand will COVID-19? - Science Magazine [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- WHO, UN Foundation and partners launch first-of-its-kind COVID-19 Solidarity Response Fund - World Health Organization [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Covid-19: PM to address nation tonight - New Straits Times [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- COVID-19: Where every sport lies after mass disruption - RTE.ie [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- COVID-19: Facts, myths and hypotheses | TheHill - The Hill [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Hong Kong Has Largely Survived COVID-19. Can New York and The US Do It Too? - BuzzFeed News [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- UPDATE: Case of COVID-19 confirmed in Wilson County - WITN [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Is This Train Car Carrying 'COVID-19'? - Snopes.com [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Coronavirus pandemic: facts, updates and what to do about COVID-19 - The Verge [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- DHS: 34 people test positive for COVID-19 in Wisconsin - WBAY [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- COVID-19 by the numbers; plus key resources to help you stay informed - Berkeleyside [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- The Covid-19 puzzles that scientists are still trying to answer - The Guardian [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- What's the COVID-19 end game? - The San Diego Union-Tribune [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- The Covid-19 coronavirus is not the flu. Its worse. - Vox.com [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Phones Could Track the Spread of Covid-19. Is It a Good Idea? - WIRED [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- NIH Reports First Known Employee with COVID-19 Infection - National Institutes of Health [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Newborn tests positive for COVID-19 in London - Livescience.com [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Covid-19: Malaysia's pandemic action plan activated for the coronavirus - The Star Online [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- How Bad Will The COVID-19 Coronavirus Epidemic Get In The U.S.? Health Experts Weigh In - Forbes [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- Can People Who Recover from COVID-19 Become Reinfected? - Snopes.com [Last Updated On: March 16th, 2020] [Originally Added On: March 16th, 2020]
- THE LATEST: 41 test positive for COVID-19 in the state - WFSB [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Twelve new cases of COVID-19 announced in Illinois; bringing total to 105 - KWQC-TV6 [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Eagle County outlines shift for COVID-19 testing, Vail Health shifts operations - Vail Daily News [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- 7th positive COVID-19 case announced in Hawaii, all cases related to travel - KHON2 [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Canada tightens borders over coronavirus will it curb COVID-19s spread? - Global News [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- As health care workers prepare for COVID-19, medical students pitch in on the homefront - Minnesota Public Radio News [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Coronavirus First positive case of COVID-19 confirmed in Geauga County Kaylyn Hlavaty 7:58 AM - News 5 Cleveland [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- 2nd presumptive case of COVID 19 reported in Bell County - KWTX [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- New confirmed cases of COVID-19 in Wisconsin - WKOW [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Hawaii National Guard ready to step in against spread of COVID-19 - KHON2 [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Alberta orders all classes cancelled, daycares closed as COVID-19 cases rise to 56 in the province - Global News [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Has Italy Stopped Treating the Elderly in the COVID-19 Pandemic? - Snopes.com [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Coronavirus testing: Information on COVID-19 tests according to state health departments - NBCNews.com [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Working from home because of COVID-19? Here are 10 ways to spend your time - Science Magazine [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Two positive COVID-19 cases announced in Fairbanks, bringing Alaska's confirmed total to 3 - Anchorage Daily News [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- 8 more positive cases of COVID-19 brings Michigan total to 33 - FOX 2 Detroit [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- COVID-19: Who Is Infectious? - Forbes [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- The Guardian view on the latest Covid-19 steps: a recipe for isolation - The Guardian [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Government publishes updated COVID-19 industry guidance - GOV.UK [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- NIH clinical trial of investigational vaccine for COVID-19 begins - National Institutes of Health [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Expanding Colorado's COVID-19 Testing Capacity Proves Frustrating to Polis, Doctors And The Public - Colorado Public Radio [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Microsoft Bing launches interactive COVID-19 map to provide pandemic news - The Verge [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Coronavirus tips: How to slow the spread of COVID-19 with hand-washing, social distance - USA TODAY [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- See Which Countries are Flattening their COVID-19 Curve - Visual Capitalist [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- With launch of COVID-19 data hub, the White House issues a call to action for AI researchers - TechCrunch [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- COVID-19 - Cabinet for Health and Family Services [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Coronavirus Disease 2019 (COVID-19) | AustinTexas.gov [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- First COVID-19 case in Waterbury is confirmed - Waterbury Republican American [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Covid-19 reveals the alarming truth that many children cant wash their hands at school - The Guardian [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Statement on COVID-19 Panel Discussion Notes That Were Attributed to UCSF - UCSF News Services [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Covid-19 coronavirus testing in the US has been absurdly sluggish. That puts us at risk. - Vox.com [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Regal is closing all theaters until further notice over COVID-19 fears - TechCrunch [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Amazon limiting shipments to certain types of products due to COVID-19 pandemic - TechCrunch [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Coralville company to produce millions of kits to test for COVID-19 - KCRG [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Number of COVID-19 cases in Erie County rises to 11, new case confirmed in Wyoming County - WIVB.com - News 4 [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Coronavirus tips and symptoms: What everyone should know about getting the new coronavirus - Vox.com [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Tech giants are getting creative to manage the COVID-19 crisis - The Verge [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- COVID-19: Mental health in the age of coronavirus - UN News [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- White House provides an update on COVID-19 testing in the U.S., says theres been a dramatic ramp - TechCrunch [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Covid-19: How long does the coronavirus last on surfaces? - BBC News [Last Updated On: March 17th, 2020] [Originally Added On: March 17th, 2020]
- Hospital in Boston will be converted into Covid-19 treatment center - STAT [Last Updated On: March 18th, 2020] [Originally Added On: March 18th, 2020]
- 78 cases of COVID-19 confirmed in Tennessee - NewsChannel5.com [Last Updated On: March 18th, 2020] [Originally Added On: March 18th, 2020]
- COVID 19: Tennessee confirmed cases reaches 52, Dept of Health releases age ranges of those infected - Clarksville Now [Last Updated On: March 18th, 2020] [Originally Added On: March 18th, 2020]
- Housing associations under pressure to offer Covid-19 rent holidays - The Guardian [Last Updated On: March 18th, 2020] [Originally Added On: March 18th, 2020]
- Sacramento woman dead from COVID-19 attended church with others who have virus - KCRA Sacramento [Last Updated On: March 18th, 2020] [Originally Added On: March 18th, 2020]