Insights into vaccines for elderly individuals: from the impacts of immunosenescence to delivery strategies | npj Vaccines – Nature.com

Li, X. et al. Inflammation and aging: signaling pathways and intervention therapies. Signal Transduct. Target Ther. 8, 239 (2023).

Article PubMed PubMed Central Google Scholar

United Nations. Department of Economic and Social Affairs, Population Division (2019). World Population Ageing 2019: Highlights (ST/ESA/SER.A/430) (2022).

Gralinski, L. E. & Menachery, V. D. Return of the Coronavirus: 2019-nCoV. Viruses 12, 135 (2020).

Article PubMed PubMed Central Google Scholar

Koff, W. C. et al. Accelerating next-generation vaccine development for global disease prevention. Science 340, 1232910 (2013).

Article PubMed PubMed Central Google Scholar

Mascola, J. R. & Fauci, A. S. Novel vaccine technologies for the 21st century. Nat. Rev. Immunol. 20, 8788 (2020).

Article CAS PubMed Google Scholar

Hou, Y. et al. Advanced subunit vaccine delivery technologies: from vaccine cascade obstacles to design strategies. Acta Pharm. Sin. B 13, 33213338 (2023).

Article CAS PubMed PubMed Central Google Scholar

Cunningham, A. L., McIntyre, P., Subbarao, K., Booy, R. & Levin, M. J. Vaccines for older adults. BMJ 372, n188 (2021).

Article PubMed Google Scholar

Bell, M. R. & Kutzler, M. A. An old problem with new solutions: strategies to improve vaccine efficacy in the elderly. Adv. Drug Deliv. Rev. 183, 114175 (2022).

Article CAS PubMed Google Scholar

Osterholm, M. T. Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis. Lancet Infect. Dis. 12, 3644 (2012).

Article PubMed Google Scholar

Walford, R. L. The immunologic theory of aging. Gerontologist 4, 195197 (1964).

Article CAS PubMed Google Scholar

Willyard, C. How anti-ageing drugs could boost COVID vaccines in older people. Nature 586, 352354 (2020).

Article CAS PubMed Google Scholar

Qin, X., Jian, D. & Yi, C. Role of CD8+ T lymphocyte cells: interplay with stromal cells in tumor microenvironment. Acta Pharm. Sin. B 11, 13651378 (2021).

Article Google Scholar

Riese, P. et al. Distinct immunological and molecular signatures underpinning influenza vaccine responsiveness in the elderly. Nat. Commun. 13, 6894 (2022).

Article CAS PubMed PubMed Central Google Scholar

Roukens, A. H. et al. Elderly subjects have a delayed antibody response and prolonged viraemia following yellow fever vaccination: a prospective controlled cohort study. PloS One 6, e27753 (2011).

Article CAS PubMed PubMed Central Google Scholar

Schulz, A. R. et al. Low thymic activity and dendritic cell numbers are associated with the immune response to primary viral infection in elderly humans. J. Immunol. 195, 46994711 (2015).

Article CAS PubMed Google Scholar

Ding, Y., Li, Z., Jaklenec, A. & Hu, Q. Vaccine delivery systems toward lymph nodes. Adv. Drug Deliv. Rev. 179, 113914 (2021).

Article CAS PubMed PubMed Central Google Scholar

Lefebvre, J. S., Masters, A. R., Hopkins, J. W. & Haynes, L. Age-related impairment of humoral response to influenza is associated with changes in antigen specific T follicular helper cell responses. Sci. Rep. 6, 25051 (2016).

Article CAS PubMed PubMed Central Google Scholar

Chen, J., Deng, J. C. & Goldstein, D. R. How aging impacts vaccine efficacy: known molecular and cellular mechanisms and future directions. Trends Mol. Med. 28, 11001111 (2022).

Article CAS PubMed PubMed Central Google Scholar

Hadamitzky, C. et al. Age-dependent histoarchitectural changes in human lymph nodes: an underestimated process with clinical relevance? J. Anat. 216, 556562 (2010).

Article PubMed PubMed Central Google Scholar

Agrawal, A. et al. Altered innate immune functioning of dendritic cells in elderly humans: a role of phosphoinositide 3-kinase-signaling pathway. J. Immunol. 178, 69126922 (2007).

Article CAS PubMed Google Scholar

Yang, Y., Guo, X., Hu, B., He, P. & Feng, M. Generated SecPen_NY-ESO-1_ubiquitin-pulsed dendritic cell cancer vaccine elicits stronger and specific T cell immune responses. Acta Pharm. Sin. B 11, 476487 (2020).

Article PubMed PubMed Central Google Scholar

Eisenbarth, S. C. Dendritic cell subsets in T cell programming: location dictates function. Nat. Rev. Immunol. 19, 89103 (2019).

Article CAS PubMed PubMed Central Google Scholar

Heath, W. R., Kato, Y., Steiner, T. M. & Caminschi, I. Antigen presentation by dendritic cells for B cell activation. Curr. Opin. Immunol. 58, 4452 (2019).

Article CAS PubMed Google Scholar

Wang, J., Geiger, H. & Rudolph, K. L. Immunoaging induced by hematopoietic stem cell aging. Curr. Opin. Immunol. 23, 532536 (2011).

Article CAS PubMed Google Scholar

Panda, A. et al. Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J. Immunol. 184, 25182527 (2010).

Article CAS PubMed Google Scholar

Leleux, J., Atalis, A. & Roy, K. Engineering immunity: modulating dendritic cell subsets and lymph node response to direct immune-polarization and vaccine efficacy. J. Control. Release 219, 610621 (2015).

Article CAS PubMed PubMed Central Google Scholar

Jackaman, C. et al. Targeting macrophages rescues age-related immune deficiencies in C57BL/6J geriatric mice. Aging Cell 12, 345357 (2013).

Article CAS PubMed Google Scholar

Prieto, L. I. et al. Senescent alveolar macrophages promote early-stage lung tumorigenesis. Cancer Cell 41, 12611275.e6 (2023).

Article CAS PubMed Google Scholar

Wang, J., Yang, J. & Kopecek, J. Nanomedicines in B cell-targeting therapies. Acta Biomater. 137, 119 (2022).

Article PubMed Google Scholar

Frasca, D. & Blomberg, B. B. Aging affects human B cell responses. J. Clin. Immunol. 31, 430435 (2011).

Article PubMed PubMed Central Google Scholar

Pritz, T. et al. Plasma cell numbers decrease in bone marrow of old patients. Eur. J. Immunol. 45, 738746 (2015).

Article CAS PubMed Google Scholar

Cancro, M. P. Age-associated B cells. Annu. Rev. Immunol. 38, 315340 (2020).

Article CAS PubMed Google Scholar

Yam-Puc, J. C. et al. Age-associated B cells predict impaired humoral immunity after COVID-19 vaccination in patients receiving immune checkpoint blockade. Nat. Commun. 14, 3292 (2023).

Article CAS PubMed PubMed Central Google Scholar

Allen, C. D. et al. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat. Immunol. 5, 943952 (2004).

Article CAS PubMed Google Scholar

Wols, H. A. et al. Migration of immature and mature B cells in the aged microenvironment. Immunology 129, 278290 (2010).

Article PubMed Google Scholar

Frasca, D., Blomberg, B. B., Garcia, D., Keilich, S. R. & Haynes, L. Age-related factors that affect B cell responses to vaccination in mice and humans. Immunol. Rev. 296, 142154 (2020).

Article CAS PubMed PubMed Central Google Scholar

Lefebvre, J. S. et al. The aged microenvironment contributes to the agerelated functional defects of CD4 T cells in mice. Aging Cell 11, 732740 (2012).

Article CAS PubMed Google Scholar

Silva-Cayetano, A. et al. Spatial dysregulation of T follicular helper cells impairs vaccine responses in aging. Nat. Immunol. 24, 11241137 (2023).

Article CAS PubMed PubMed Central Google Scholar

Khurana, S., Frasca, D., Blomberg, B. & Golding, H. AID activity in B cells strongly correlates with polyclonal antibody affinity maturation in-vivo following pandemic 2009-H1N1 vaccination in humans. PLoS Pathog. 8, e1002920 (2012).

Article CAS PubMed PubMed Central Google Scholar

Stiasny, K., Aberle, J. H., Keller, M., Grubeck-Loebenstein, B. & Heinz, F. X. Age affects quantity but not quality of antibody responses after vaccination with an inactivated flavivirus vaccine against tick-borne encephalitis. PLoS One 7, e34145 (2012).

Article CAS PubMed PubMed Central Google Scholar

Goronzy, J. J. & Weyand, C. M. Understanding immunosenescence to improve responses to vaccines. Nat. Immunol. 14, 428436 (2013).

Article CAS PubMed PubMed Central Google Scholar

Chen, X., Liu, Q. & Xiang, A. P. CD8+CD28- T cells: not only age-related cells but a subset of regulatory T cells. Cell Mol. Immunol. 15, 734736 (2018).

Article CAS PubMed PubMed Central Google Scholar

Kumagai, S. et al. The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nat. Immunol. 21, 13461358 (2020).

Article CAS PubMed Google Scholar

Gustafson, C. E., Weyand, C. M. & Goronzy, J. J. T follicular helper cell development and functionality in immune ageing. Clin. Sci. 132, 19251935 (2018).

Article CAS Google Scholar

Herati, R. S. et al. Circulating CXCR5+PD-1+ response predicts influenza vaccine antibody responses in young adults but not elderly adults. J. Immunol. 193, 35283537 (2014).

Article CAS PubMed Google Scholar

Franceschi, C. et al. Inflamm aging: an evolutionary perspective on immunosenescence. Ann. N.Y. Acad. Sci. 908, 244254 (2000).

Article CAS PubMed Google Scholar

Franceschi, C. et al. Inflammaging and Garb-aging. Trends Endocrinol. Metab. 28, 199212 (2017).

Article CAS PubMed Google Scholar

Gilroy, D. & De Maeyer, R. New insights into the resolution of inflammation. Semin. Immunol. 27, 161168 (2015).

Article CAS PubMed Google Scholar

Chambers, E. S. & Akbar, A. N. Can blocking inflammation enhance immunity during aging? J. Allergy Clin. Immunol. 145, 13231331 (2020).

Article CAS PubMed Google Scholar

Hadrup, S. R. et al. Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-specific T cells in the very elderly. J. Immunol. 176, 26452653 (2006).

Article CAS PubMed Google Scholar

Frasca, D., Blomberg, B. B. & Paganelli, R. Aging, obesity, and inflammatory age-related diseases. Front. Immunol. 8, 1745 (2017).

Read more:

Insights into vaccines for elderly individuals: from the impacts of immunosenescence to delivery strategies | npj Vaccines - Nature.com

Related Posts
Tags: