Immunoinformatics, molecular docking and dynamics simulation approaches unveil a multi epitope-based potent … – Nature.com

Fadly, A. M. Isolation and identification of avian leukosis viruses: A review. Avian Pathol.: J. W.V.P.A 29(6), 529535. https://doi.org/10.1080/03079450020016760 (2000).

Article CAS Google Scholar

Fandio, S., Gomez-Lucia, E., Bentez, L. & Domnech, A. Avian leukosis: Will we be able to get rid of it?. Anim.: Open Access J. MDPI 13(14), 2358. https://doi.org/10.3390/ani13142358 (2023).

Article Google Scholar

Zheng, L. P. et al. Current epidemiology and co-infections of avian immunosuppressive and neoplastic diseases in chicken flocks in central China. Viruses 14(12), 2599. https://doi.org/10.3390/v14122599 (2022).

Article CAS PubMed PubMed Central Google Scholar

Borodin, A. M. et al. Eradication of avian leukosis virus subgroups J and K in broiler cross chickens by selection against infected birds using multilocus PCR. PloS One 17(6), e0269525. https://doi.org/10.1371/journal.pone.0269525 (2022).

Article CAS PubMed PubMed Central Google Scholar

Zavala, G. & Cheng, S. Detection and characterization of avian leukosis virus in Mareks disease vaccines. Avian Dis. 50(2), 209215. https://doi.org/10.1637/7444-092405R.1 (2006).

Article PubMed Google Scholar

Gao, Y. L. et al. Avian leukosis virus subgroup J in layer chickens, China. Emerg. Infect. Dis. 16(10), 16371638. https://doi.org/10.3201/eid1610.100780 (2010).

Article PubMed PubMed Central Google Scholar

Khan, A. et al. Lymphoid leukosis in fayoumi birds reared in countryside. Intl. J. Agric. Biol. 22, 620626. https://doi.org/10.17957/IJAB/15.1107 (2019).

Article CAS Google Scholar

Li, H. et al. Aberrant expression of liver microRNA in chickens infected with subgroup J avian leukosis virus. Virus Res. 169(1), 268271. https://doi.org/10.1016/j.virusres.2012.07.003 (2012).

Article CAS PubMed Google Scholar

Payne, L. N. & Nair, V. The long view: 40 years of avian leukosis research. Avian Pathol: J. W.V.P.A 41(1), 1119. https://doi.org/10.1080/03079457.2011.646237 (2012).

Article CAS Google Scholar

Abdel-Latif, M. M. & Khalafalla, A. I. Detection by PCR of multiple subgroups of avian leukosis virus (ALV) in broilers in the Sudan. J. Anim. Vet. Adv. 4(3), 407413 (2005).

Google Scholar

Li, Q. et al. Recombinant subgroup B avian leukosis virus combined with the subgroup J env gene significantly increases its pathogenicity. Vet. Microbiol. 250, 108862. https://doi.org/10.1016/j.vetmic.2020.108862 (2020).

Article CAS PubMed Google Scholar

Cui, N., Su, S., Chen, Z., Zhao, X. & Cui, Z. Genomic sequence analysis and biological characteristics of a rescued clone of avian leukosis virus strain JS11C1, isolated from indigenous chickens. J. Gen. Virol. 95(Pt 11), 25122522. https://doi.org/10.1099/vir.0.067264-0 (2014).

Article CAS PubMed Google Scholar

Parvizpour, S., Pourseif, M. M., Razmara, J., Rafi, M. A. & Omidi, Y. Epitope-based vaccine design: A comprehensive overview of bioinformatics approaches. Drug Discov. Today 25(6), 10341042. https://doi.org/10.1016/j.drudis.2020.03.006 (2020).

Article CAS PubMed Google Scholar

Li, H. et al. Diversity of avian leukosis virus subgroup J in local chickens, Jiangxi, China. Sci. Rep. 11(1), 4797. https://doi.org/10.1038/s41598-021-84189-7 (2021).

Article ADS CAS PubMed PubMed Central Google Scholar

Kheimar, A. et al. A genetically engineered commercial chicken line is resistant to highly pathogenic avian leukosis virus subgroup. J. Microorgan. 9(5), 1066. https://doi.org/10.3390/microorganisms9051066 (2021).

Article CAS Google Scholar

Payne, L. N. et al. A novel subgroup of exogenous avian leukosis virus in chickens. J. Gen. Virol. 72(Pt 4), 801807. https://doi.org/10.1099/0022-1317-72-4-801 (1991).

Article PubMed Google Scholar

Wang, X., Zhao, P. & Cui, Z. Z. Identification of a new subgroup of avian leukosis virus isolated from Chinese indigenous chicken breeds]. Bing Du XueBao 28(6), 609614 (2012) (Chinese).

CAS Google Scholar

Patronov, A. & Doytchinova, I. T-cell epitope vaccine design by immunoinformatics. Open Biol. 3(1), 120139. https://doi.org/10.1098/rsob.120139 (2013).

Article CAS PubMed PubMed Central Google Scholar

Vij, S., Thakur, R. & Rishi, P. Reverse engineering approach: A step towards a new era of vaccinology with special reference to Salmonella. Exp. Rev. Vacc. 21(12), 17631785. https://doi.org/10.1080/14760584.2022.2148661 (2022).

Article CAS Google Scholar

Zhang, J. et al. The immunogenicity and protective immunity of multi-epitopes DNA prime-protein boost vaccines encoding Amastin-Kmp-11, Kmp11-Gp63 and Amastin-Gp63 against visceral leishmaniasis. PloS One 15(3), e0230381. https://doi.org/10.1371/journal.pone.0230381 (2020).

Article CAS PubMed PubMed Central Google Scholar

Saldanha, L., Langel, . & Vale, N. In Silico studies to support vaccine development. Pharmaceutics 15(2), 654. https://doi.org/10.3390/pharmaceutics15020654 (2023).

Article PubMed PubMed Central Google Scholar

Jorge, S. & Dellagostin, O. A. The development of veterinary vaccines: A review of traditional methods and modern biotechnology approaches. Biotechnol. Res. Innov. 1, 613. https://doi.org/10.1016/j.biori.2017.10.001 (2017).

Article Google Scholar

Silva-Arrieta, S., Goulder, P. J. R. & Brander, C. In silico veritas? Potential limitations for SARS-CoV-2 vaccine development based on T-cell epitope prediction. PLoS Pathog. 16(6), e1008607. https://doi.org/10.1371/journal.ppat.1008607 (2020).

Article CAS PubMed PubMed Central Google Scholar

Shawan, M. M. A. K. et al. Advances in computational and bioinformatics tools and databases for designing and developing a multi-epitope-based peptide vaccine. Int. J. Pept. Res. Ther. 29(4), 60. https://doi.org/10.1007/s10989-023-10535-0 (2023).

Article CAS PubMed PubMed Central Google Scholar

Dey, J. et al. Designing a novel multi-epitope vaccine to evoke a robust immune response against pathogenic multidrug-resistant Enterococcus faecium bacterium. Gut Pathog. 14(1), 21. https://doi.org/10.1186/s13099-022-00495-z (2022).

Article CAS PubMed PubMed Central Google Scholar

NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucl. Acids Res. 44(D1), D7D19. https://doi.org/10.1093/nar/gkv1290 (2016).

Article CAS Google Scholar

Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R.D. & Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. The Proteomics Protocols Handbook, pp. 571607 (2005). https://doi.org/10.1385/1-59259-890-0:571

Doytchinova, I. A. & Flower, D. R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 8, 4. https://doi.org/10.1186/1471-2105-8-4 (2007).

Article CAS Google Scholar

Zaharieva, N., Dimitrov, I., Flower, D. & Doytchinova, I. Immunogenicity prediction by VaxiJen: A 10 year overview. J. Proteom. Bioinform. https://doi.org/10.4172/jpb.1000454 (2017).

Article Google Scholar

Dimitrov, I., Bangov, I., Flower, D. R. & Doytchinova, I. AllerTOP vol 2a server for prediction of allergens. J. Mol. Model. 20(6), 2278. https://doi.org/10.1007/s00894-014-2278-5 (2014).

Article CAS PubMed Google Scholar

Gupta, S., Open Source Drug Discovery Consortium et al. Approach for predicting toxicity of peptides and proteins. PloS One 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957 (2013).

Article ADS CAS PubMed PubMed Central Google Scholar

Mao, Y., Su, Q., Li, J., Jiang, T. & Wang, Y. Avian leukosis virus contamination in live vaccines: A retrospective investigation in China. Vet. Microbiol. 246, 108712. https://doi.org/10.1016/j.vetmic.2020.108712 (2020).

Article CAS PubMed Google Scholar

Kll, L., Krogh, A. & Sonnhammer, E. L. Advantages of combined transmembrane topology and signal peptide predictionthe Phobius web server. Nucl. Acids Res. 35(Web Server issue), W429W432. https://doi.org/10.1093/nar/gkm256 (2007).

Article PubMed PubMed Central Google Scholar

Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. in Nucleic Acids Symposium Series, Jan 1 (Vol. 41, No. 41, pp. 9598). Information Retrieval Ltd., c1979-c2000 (1999)

Ansari, H. R. & Raghava, G. P. Identification of conformational B-cell Epitopes in an antigen from its primary sequence. Immun. Res. 6, 6. https://doi.org/10.1186/1745-7580-6-6 (2010).

Article CAS Google Scholar

Saha, S. & Raghava, G. P. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65(1), 4048. https://doi.org/10.1002/prot.21078 (2006).

Article CAS PubMed Google Scholar

Vita, R. et al. The immune epitope database (IEDB): 2018 update. Nucl. Acids Res. 47(D1), D339D343. https://doi.org/10.1093/nar/gky1006 (2019).

Article CAS PubMed Google Scholar

Dhanda, S. K. et al. IEDB-AR: Immune epitope database-analysis resource in 2019. Nucl. Acids Res. 47(W1), W502W506. https://doi.org/10.1093/nar/gkz452 (2019).

Article CAS PubMed PubMed Central Google Scholar

Mugunthan, S. P. & Harish, M. C. Multi-epitope-based vaccine designed by targeting cytoadherence proteins of mycoplasma gallisepticum. ACS Omega 6(21), 1374213755. https://doi.org/10.1021/acsomega.1c01032 (2021).

Article CAS PubMed PubMed Central Google Scholar

Andongma, B. T. et al. design of a promiscuous chimeric multi-epitope vaccine against Mycobacterium tuberculosis. Comput. Struct. Biotechnol. J. 21, 9911004. https://doi.org/10.1016/j.csbj.2023.01.019 (2023).

Article CAS PubMed PubMed Central Google Scholar

Nielsen, M. & Lund, O. NN-align An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinform. 10, 296. https://doi.org/10.1186/1471-2105-10-296 (2009).

Article CAS Google Scholar

Omoniyi, A. A. et al. design and analyses of a multi-epitope vaccine against Crimean-Congo hemorrhagic fever virus through reverse vaccinology and immunoinformatics approaches. Sci. Rep. 12(1), 8736. https://doi.org/10.1038/s41598-022-12651-1 (2022).

Article ADS CAS PubMed PubMed Central Google Scholar

Pandey, R. K., Ojha, R., Aathmanathan, V. S., Krishnan, M. & Prajapati, V. K. Immunoinformatics approaches to design a novel multi-epitope subunit vaccine against HIV infection. Vaccine 36(17), 22622272. https://doi.org/10.1016/j.vaccine.2018.03.042 (2018).

Article CAS PubMed Google Scholar

Almofti, Y. A., Abd-Elrahman, K. A. & Eltilib, E. E. M. Vaccinomic approach for novel multi epitopes vaccine against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). BMC Immunol. 22(1), 22. https://doi.org/10.1186/s12865-021-00412-0 (2021).

Article CAS PubMed PubMed Central Google Scholar

Mahmoud, N. A., Elshafei, A. M. & Almofti, Y. A. A novel strategy for developing vaccine candidate against Jaagsiekte sheep retrovirus from the envelope and gag proteins: An in-silico approach. BMC Vet. Res. 18(1), 343. https://doi.org/10.1186/s12917-022-03431-0 (2022).

Article CAS PubMed PubMed Central Google Scholar

Wang, S., Li, W., Liu, S. & Xu, J. RaptorX-Property: A web server for protein structure property prediction. Nucl. Acids Res. 44(W1), W430W435. https://doi.org/10.1093/nar/gkw306 (2016).

Article CAS PubMed PubMed Central Google Scholar

Ko, J., Park, H., Heo, L. & Seok, C. GalaxyWEB server for protein structure prediction and refinement. Nucl. Acids Res. 40(Web Server issue), W294W297. https://doi.org/10.1093/nar/gks493 (2012).

Article CAS PubMed PubMed Central Google Scholar

Seok, C. et al. Accurate protein structure prediction: What comes next?. Bio Des. 9, 4750. https://doi.org/10.34184/kssb.2021.9.3.47 (2021).

Article Google Scholar

Srivastava, S. et al. Structural Basis for designing multiepitope vaccines against COVID-19 infection: Vaccine design and validation. JMIR Bioinform. Biotechnol. 1(1), e19371. https://doi.org/10.2196/19371 (2020).

Article Google Scholar

Lovell, S. C. et al. Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50(3), 437450. https://doi.org/10.1002/prot.10286 (2003).

Article CAS PubMed Google Scholar

Wiederstein, M. & Sippl, M. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucl. Acids Res. 35, W407W410. https://doi.org/10.1093/nar/gkm290 (2007).

Article PubMed PubMed Central Google Scholar

Original post:

Immunoinformatics, molecular docking and dynamics simulation approaches unveil a multi epitope-based potent ... - Nature.com

Related Posts
Tags: