Immune response stability to the SARS-CoV-2 mRNA vaccine booster is influenced by differential splicing of HLA … – Nature.com

Brito, A. F. et al. Global disparities in SARS-CoV-2 genomic surveillance. Nat. Commun. 13, 7003. https://doi.org/10.1038/s41467-022-33713-y (2022).

Article ADS CAS PubMed PubMed Central Google Scholar

Ikeokwu, A. E. et al. A meta-analysis to ascertain the effectiveness of COVID-19 vaccines on clinical outcomes in patients with COVID-19 infection in North America. Cureus 15, e41053. https://doi.org/10.7759/cureus.41053 (2023).

Article PubMed PubMed Central Google Scholar

Amanat, F. & Krammer, F. SARS-CoV-2 Vaccines: Status report. Immunity 52, 583589. https://doi.org/10.1016/j.immuni.2020.03.007 (2020).

Article CAS PubMed PubMed Central Google Scholar

Kim, J. H., Marks, F. & Clemens, J. D. Looking beyond COVID-19 vaccine phase 3 trials. Nat. Med. 27, 205211. https://doi.org/10.1038/s41591-021-01230-y (2021).

Article CAS PubMed Google Scholar

Lipsitch, M., Krammer, F., Regev-Yochay, G., Lustig, Y. & Balicer, R. D. SARS-CoV-2 breakthrough infections in vaccinated individuals: Measurement, causes and impact. Nat. Rev. Immunol. 22, 5765. https://doi.org/10.1038/s41577-021-00662-4 (2022).

Article CAS PubMed Google Scholar

Tan, P. L., Jacobson, R. M., Poland, G. A., Jacobsen, S. J. & Pankratz, V. S. Twin studies of immunogenicitydetermining the genetic contribution to vaccine failure. Vaccine 19, 24342439. https://doi.org/10.1016/s0264-410x(00)00468-0 (2001).

Article CAS PubMed Google Scholar

Posteraro, B. et al. The link between genetic variation and variability in vaccine responses: Systematic review and meta-analyses. Vaccine 32, 16611669. https://doi.org/10.1016/j.vaccine.2014.01.057 (2014).

Article CAS PubMed Google Scholar

Kennedy, R. B. et al. Genome-wide SNP associations with rubella-specific cytokine responses in measles-mumps-rubella vaccine recipients. Immunogenetics 66, 493499. https://doi.org/10.1007/s00251-014-0776-3 (2014).

Article CAS PubMed PubMed Central Google Scholar

Lambert, N. D. et al. Polymorphisms in HLA-DPB1 are associated with differences in rubella virus-specific humoral immunity after vaccination. J. Infect. Dis. 211, 898905. https://doi.org/10.1093/infdis/jiu553 (2015).

Article CAS PubMed Google Scholar

Haralambieva, I. H., Kennedy, R. B., Ovsyannikova, I. G., Whitaker, J. A. & Poland, G. A. Variability in humoral immunity to measles vaccine: New developments. Trends Mol. Med. 21, 789801. https://doi.org/10.1016/j.molmed.2015.10.005 (2015).

Article CAS PubMed PubMed Central Google Scholar

Voigt, E. A. et al. Polymorphisms in the Wilms tumor gene are associated with interindividual variations in Rubella virus-specific cellular immunity after Measles-Mumps-Rubella II vaccination. J. Infect. Dis. 217, 560566. https://doi.org/10.1093/infdis/jix538 (2018).

Article CAS PubMed Google Scholar

Scepanovic, P. et al. Human genetic variants and age are the strongest predictors of humoral immune responses to common pathogens and vaccines. Genome Med. 10, 59. https://doi.org/10.1186/s13073-018-0568-8 (2018).

Article CAS PubMed PubMed Central Google Scholar

Pan, L. et al. A genome-wide association study identifies polymorphisms in the HLA-DR region associated with non-response to hepatitis B vaccination in Chinese Han populations. Hum. Mol. Genet. 23, 22102219. https://doi.org/10.1093/hmg/ddt586 (2014).

Article CAS PubMed Google Scholar

Wu, T.-W. et al. SNP rs7770370 in HLA-DPB1 loci as a major genetic determinant of response to booster hepatitis B vaccination: Results of a genome-wide association study. J. Gastroenterol. Hepatol. 30, 891899. https://doi.org/10.1111/jgh.12845 (2015).

Article CAS PubMed Google Scholar

Chung, S. et al. GWAS identifying HLA-DPB1 gene variants associated with responsiveness to hepatitis B virus vaccination in Koreans: Independent association of HLA-DPB1*04:02 possessing rs1042169 G - rs9277355 C - rs9277356 A. J. Viral Hepat. 26, 13181329. https://doi.org/10.1111/jvh.13168 (2019).

Article CAS PubMed Google Scholar

Linnik, J. E. & Egli, A. Impact of host genetic polymorphisms on vaccine induced antibody response. Hum. Vaccin. Immunother. 12, 907915. https://doi.org/10.1080/21645515.2015.1119345 (2016).

Article PubMed PubMed Central Google Scholar

Ovsyannikova, I. G. et al. Genome-wide association study of antibody response to smallpox vaccine. Vaccine 30, 41824189. https://doi.org/10.1016/j.vaccine.2012.04.055 (2012).

Article CAS PubMed PubMed Central Google Scholar

Pajewski, N. M. et al. A genome-wide association study of host genetic determinants of the antibody response to Anthrax Vaccine Adsorbed. Vaccine 30, 47784784. https://doi.org/10.1016/j.vaccine.2012.05.032 (2012).

Article CAS PubMed PubMed Central Google Scholar

Zimmermann, P. & Curtis, N. Factors that influence the immune response to vaccination. Clin. Microbiol. Rev. https://doi.org/10.1128/CMR.00084-18 (2019).

Article PubMed PubMed Central Google Scholar

Martin, C. A. et al. Ethnic differences in cellular and humoral immune responses to SARS-CoV-2 vaccination in UK healthcare workers: A cross-sectional analysis. EClinicalMedicine 58, 101926. https://doi.org/10.1016/j.eclinm.2023.101926 (2023).

Article PubMed PubMed Central Google Scholar

Santoro, F. et al. Transcriptomics of the vaccine immune response: Priming with adjuvant modulates recall innate responses after boosting. Front. Immunol. 9, 1248. https://doi.org/10.3389/fimmu.2018.01248 (2018).

Article CAS PubMed PubMed Central Google Scholar

Chaussabel, D., Pascual, V. & Banchereau, J. Assessing the human immune system through blood transcriptomics. BMC Biol. 8, 84. https://doi.org/10.1186/1741-7007-8-84 (2010).

Article CAS PubMed PubMed Central Google Scholar

de Souza, W. M. et al. Epidemiological and clinical characteristics of the COVID-19 epidemic in Brazil. Nat. Hum. Behav. 4, 856865. https://doi.org/10.1038/s41562-020-0928-4 (2020).

Article PubMed Google Scholar

Ministrio da Sade. Agncia Nacional de Vigilncia Sanitria/2a Diretoria/Gerncia-Geral de Medicamentos e Produtos Biolgicos. Resoluo RE n 2.324, de 10 de junho de 2021. https://www.in.gov.br/web/dou/-/resolucao-re-n-2.324-de-10-de-junho-de-2021-325295063 (2021).

Campos, G. R. F. et al. Booster dose of BNT162b2 after two doses of CoronaVac improves neutralization of SARS-CoV-2 Omicron variant. Commun. Med. 2, 76. https://doi.org/10.1038/s43856-022-00141-4 (2022).

Article CAS PubMed PubMed Central Google Scholar

Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 26032615. https://doi.org/10.1056/NEJMoa2034577 (2020).

Article CAS PubMed Google Scholar

Baglioni, I. et al. Evaluation of antibody response anti SARS-Cov-2: A retrospective observational study (Marche-Italy). Ig. Sanita Pubbl. 80, 1326 (2023).

PubMed Google Scholar

Doria-Rose, N. et al. Antibody persistence through 6 months after the second dose of mRNA-1273 vaccine for Covid-19. N. Engl. J. Med. 384, 22592261. https://doi.org/10.1056/NEJMc2103916 (2021).

Article PubMed PubMed Central Google Scholar

Cromer, D. et al. Neutralising antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of boosting: A meta-analysis. Lancet Microbe 3, e52e61. https://doi.org/10.1016/S2666-5247(21)00267-6 (2022).

Article CAS PubMed Google Scholar

Andrews, S. FASTQC. A quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).

Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 1521. https://doi.org/10.1093/bioinformatics/bts635 (2013).

Article CAS PubMed Google Scholar

DeLuca, D. S. et al. RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics 28, 15301532. https://doi.org/10.1093/bioinformatics/bts196 (2012).

Article CAS PubMed PubMed Central Google Scholar

Terra Machado, D., BernardesBrustolini, O. J., Crtes Martins, Y., Grivet Mattosa Maia, M. A. & Ribeiro de Vasconcelos, A. T. Inference of differentially expressed genes using generalized linear mixed models in a pairwise fashion. PeerJ 11, e15145. https://doi.org/10.7717/peerj.15145 (2023).

Article CAS PubMed PubMed Central Google Scholar

Shen, S. et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc. Natl. Acad. Sci. U. S. A. 111, E5593E5601. https://doi.org/10.1073/pnas.1419161111 (2014).

Article CAS PubMed PubMed Central Google Scholar

Xie, Z. et al. Gene set knowledge discovery with Enrichr. Curr. Protoc. 1, e90. https://doi.org/10.1002/cpz1.90 (2021).

Article CAS PubMed PubMed Central Google Scholar

Kuleshov, M. V. et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90W97. https://doi.org/10.1093/nar/gkw377 (2016).

Article CAS PubMed PubMed Central Google Scholar

Chen, E. Y. et al. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 14, 128. https://doi.org/10.1186/1471-2105-14-128 (2013).

Article Google Scholar

Gillespie, M. et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 50, D687D692. https://doi.org/10.1093/nar/gkab1028 (2022).

Article CAS PubMed Google Scholar

Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 2730. https://doi.org/10.1093/nar/28.1.27 (2000).

Article CAS PubMed PubMed Central Google Scholar

Ashburner, M. et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 2529. https://doi.org/10.1038/75556 (2000).

Article CAS PubMed PubMed Central Google Scholar

Piero, J. et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 48, D845D855. https://doi.org/10.1093/nar/gkz1021 (2020).

Article ADS CAS PubMed Google Scholar

Oughtred, R. et al. The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 30, 187200. https://doi.org/10.1002/pro.3978 (2021).

Article CAS PubMed Google Scholar

Bastian, M., Heymann, S. & Jacomy, M. Gephi: An open source software for exploring and manipulating networks. ICWSM 3, 361362. https://doi.org/10.1609/icwsm.v3i1.13937 (2009).

Article Google Scholar

da Silva Francisco Jr, R., et al. Pervasive inter-individual variation in allele-specific expression in monozygotic twins. Front. Genet. 10, 1178. https://doi.org/10.3389/fgene.2019.01178 (2019).

Article CAS Google Scholar

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 21142120. https://doi.org/10.1093/bioinformatics/btu170 (2014).

Article CAS PubMed PubMed Central Google Scholar

Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 20782079. https://doi.org/10.1093/bioinformatics/btp352 (2009).

Article CAS PubMed PubMed Central Google Scholar

McKenna, A. et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 12971303. https://doi.org/10.1101/gr.107524.110 (2010).

Article CAS PubMed PubMed Central Google Scholar

DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491498. https://doi.org/10.1038/ng.806 (2011).

Article CAS PubMed PubMed Central Google Scholar

Castel, S. E., Levy-Moonshine, A., Mohammadi, P., Banks, E. & Lappalainen, T. Tools and best practices for data processing in allelic expression analysis. Genome Biol. 16, 195. https://doi.org/10.1186/s13059-015-0762-6 (2015).

Article CAS PubMed PubMed Central Google Scholar

Cartegni, L., Wang, J., Zhu, Z., Zhang, M. Q. & Krainer, A. R. ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res. 31, 35683571. https://doi.org/10.1093/nar/gkg616 (2003).

Article CAS PubMed PubMed Central Google Scholar

Reese, M. G., Eeckman, F. H., Kulp, D. & Haussler, D. Improved splice site detection in Genie. J. Comput. Biol. 4, 311323. https://doi.org/10.1089/cmb.1997.4.311 (1997).

Article CAS PubMed Google Scholar

Read the original here:

Immune response stability to the SARS-CoV-2 mRNA vaccine booster is influenced by differential splicing of HLA ... - Nature.com

Related Posts
Tags: