Immune imprinting and next-generation coronavirus vaccines – Nature.com

Global Influenza Surveillance and Response System (GISRS) (WHO, accessed 1 October 2023); https://www.who.int/initiatives/global-influenza-surveillance-and-response-system

Gaymard, A., Le Briand, N., Frobert, E., Lina, B. & Escuret, V. Functional balance between neuraminidase and haemagglutinin in influenza viruses. Clin. Microbiol. Infect. 22, 975983 (2016).

Article CAS PubMed Google Scholar

Petrova, V. N. & Russell, C. A. The evolution of seasonal influenza viruses. Nat. Rev. Microbiol. 16, 4760 (2018).

Article CAS PubMed Google Scholar

Telenti, A. et al. After the pandemic: perspectives on the future trajectory of COVID-19. Nature 596, 495504 (2021).

Article CAS PubMed Google Scholar

Lewnard, J. A. & Cobey, S. Immune history and influenza vaccine effectiveness. Vaccines 6, E28 (2018).

Smith, D. J. et al. Mapping the antigenic and genetic evolution of influenza virus. Science 305, 371376 (2004).

Article CAS PubMed Google Scholar

Henry, C., Palm, A.-K. E., Krammer, F. & Wilson, P. C. From original antigenic sin to the universal influenza virus vaccine. Trends Immunol. 39, 7079 (2018).

Article CAS PubMed Google Scholar

Biswas, A., Chakrabarti, A. K. & Dutta, S. Current challenges: from the path of original antigenic sin towards the development of universal flu vaccines. Int. Rev. Immunol. 39, 2136 (2020).

Article CAS PubMed Google Scholar

Yewdell, J. W. & Santos, J. J. S. Original antigenic sin: how original? How sinful? Cold Spring Harb. Perspect. Med. 11, a038786 (2021).

Article CAS PubMed PubMed Central Google Scholar

Carabelli, A. M. et al. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat. Rev. Microbiol. 21, 162177 (2023).

CAS PubMed PubMed Central Google Scholar

Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215220 (2020).

Article CAS PubMed Google Scholar

Piccoli, L. et al. Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell 183, 10241042 (2020).

Article CAS PubMed PubMed Central Google Scholar

Duchene, S. et al. Temporal signal and the phylodynamic threshold of SARS-CoV-2. Virus Evol. 6, veaa061 (2020).

Article PubMed PubMed Central Google Scholar

Tracking SARS-CoV-2 Variants (WHO, accessed 1 October 2023); https://www.who.int/activities/tracking-SARS-CoV-2-variants

Cao, Y. et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature 608, 593602 (2022).

Article CAS PubMed PubMed Central Google Scholar

Wang, Q. et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell 186, 279286 (2023).

Article CAS PubMed PubMed Central Google Scholar

Simon-Loriere, E. & Schwartz, O. Towards SARS-CoV-2 serotypes? Nat. Rev. Microbiol. 20, 187188 (2022).

Article CAS PubMed PubMed Central Google Scholar

Goldstein, S. A., Brown, J., Pedersen, B. S., Quinlan, A. R. & Elde, N. C. Extensive recombination-driven coronavirus diversification expands the pool of potential pandemic pathogens. Genome Biol. Evol.14, evac161 (2022).

Article PubMed PubMed Central Google Scholar

Kurhade, C. et al. Low neutralization of SARS-CoV-2 Omicron BA.2.75.2, BQ.1.1 and XBB.1 by parental mRNA vaccine or a BA.5 bivalent booster. Nat. Med. 29, 344347 (2022).

Chalkias, S. et al. Original SARS-CoV-2 monovalent and Omicron BA.4/BA.5 bivalent COVID-19 mRNA vaccines: phase 2/3 trial interim results. Nat. Med. 29, 23252333 (2023).

Khoury, D. S. et al. Predicting the efficacy of variant-modified COVID-19 vaccine boosters. Nat. Med. 29, 574578 (2023).

Article CAS PubMed Google Scholar

Chemaitelly, H. et al. Immune imprinting and protection against repeat reinfection with SARS-CoV-2. N. Engl. J. Med. 387, 17161718 (2022).

Article PubMed Google Scholar

Aguilar-Bretones, M., Fouchier, R. A. M., Koopmans, M. P. G. & Nierop, G. Pvan Impact of antigenic evolution and original antigenic sin on SARS-CoV-2 immunity. J. Clin. Invest. 133, e162192 (2023).

Article CAS PubMed PubMed Central Google Scholar

Offit, P. A. Bivalent COVID-19 vaccinesa cautionary tale. N. Engl. J. Med. 388, 481483 (2023).

Article PubMed Google Scholar

Hoehl, S. & Ciesek, S. Recalling ancestral SARS-CoV-2 variants: is it an original sin with benefits? Lancet Infect. Dis. 23, 272273 (2023).

Article PubMed PubMed Central Google Scholar

Francis, T. On the doctrine of original antigenic sin. Proc. Am. Philos. Soc. 104, 572578 (1960).

Google Scholar

Murray, S. M. et al. The impact of pre-existing cross-reactive immunity on SARS-CoV-2 infection and vaccine responses. Nat. Rev. Immunol. 23, 304316 (2023).

Article CAS PubMed Google Scholar

Ng, K. W. et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science 370, 13391343 (2020).

Article CAS PubMed PubMed Central Google Scholar

Rajendran, M. et al. Analysis of anti-influenza virus neuraminidase antibodies in children, adults and the elderly by ELISA and enzyme inhibition: evidence for original antigenic sin. mBio 8, e02281-16 (2017).

Article PubMed PubMed Central Google Scholar

Rothman, A. L. Immunity to Dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat. Rev. Immunol. 11, 532543 (2011).

Article CAS PubMed Google Scholar

Tripp, R. A. & Power, U. F. Original antigenic sin and respiratory syncytial virus vaccines. Vaccines 7, 107 (2019).

Article CAS PubMed PubMed Central Google Scholar

Baraniak, I., Kern, F., Holenya, P., Griffiths, P. & Reeves, M. Original antigenic sin shapes the immunological repertoire evoked by human cytomegalovirus glycoprotein B/MF59 vaccine in seropositive recipients. J. Infect. Dis. 220, 228232 (2019).

Article CAS PubMed PubMed Central Google Scholar

Lessler, J. et al. Evidence for antigenic seniority in influenza A (H3N2) antibody responses in Southern China. PLoS Pathog. 8, e1002802 (2012).

Article CAS PubMed PubMed Central Google Scholar

Shrock, E. et al. Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. Science 370, eabd4250 (2020).

Article CAS PubMed PubMed Central Google Scholar

Woudenberg, T. et al. Humoral immunity to SARS-CoV-2 and seasonal coronaviruses in children and adults in north-eastern France. eBioMedicine 70, 103495 (2021).

Aguilar-Bretones, M. et al. Seasonal coronavirus-specific B cells with limited SARS-CoV-2 cross-reactivity dominate the IgG response in severe COVID-19. J. Clin. Invest. 131, e150613 (2021).

Article CAS PubMed PubMed Central Google Scholar

McNaughton, A. L. et al. Fatal COVID-19 outcomes are associated with an antibody response targeting epitopes shared with endemic coronaviruses. JCI Insight 7, e156372 (2022).

Article PubMed PubMed Central Google Scholar

Anderson, E. M. et al. Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection. Cell 184, 18581864 (2021).

Article CAS PubMed PubMed Central Google Scholar

Prvost, J. et al. Cross-sectional evaluation of humoral responses against SARS-CoV-2 spike. Cell Rep. Med. 1, 100126 (2020).

Article PubMed PubMed Central Google Scholar

Lv, H. et al. Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections. Cell Rep. 31, 107725 (2020).

Article CAS PubMed PubMed Central Google Scholar

Yuan, M. et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 368, 630633 (2020).

Article CAS PubMed PubMed Central Google Scholar

Tan, C.-W. et al. Pan-Sarbecovirus neutralizing antibodies in BNT162b2-immunized SARS-CoV-1 survivors. N. Engl. J. Med. 385, 14011406 (2021).

Article CAS PubMed Google Scholar

Zar, H. J. et al. Natural and hybrid immunity following four COVID-19 waves: a prospective cohort study of mothers in South Africa. eClinicalMedicine 53, 101655 (2022).

Goel, R. R. et al. Efficient recall of Omicron-reactive B cell memory after a third dose of SARS-CoV-2 mRNA vaccine. Cell 185, 18751887 (2022).

Article CAS PubMed PubMed Central Google Scholar

Rltgen, K. et al. Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell 185, 10251040 (2022).

Article PubMed PubMed Central Google Scholar

Kaku, C. I. et al. Recall of preexisting cross-reactive B cell memory after Omicron BA.1 breakthrough infection. Sci. Immunol. 7, eabq3511 (2022).

Article CAS PubMed Google Scholar

Hoffmann, M. et al. Effect of hybrid immunity and bivalent booster vaccination on Omicron sublineage neutralisation. Lancet Infect. Dis. 23, 2528 (2023).

Article PubMed Google Scholar

Chu, L. et al. Immune response to SARS-CoV-2 after a booster of mRNA-1273: an open-label phase 2 trial. Nat. Med. 28, 10421049 (2022).

Article CAS PubMed PubMed Central Google Scholar

Alsoussi, W. B. et al. SARS-CoV-2 Omicron boosting induces de novo B-cell response in humans. Nature 617, 592598 (2023).

Article CAS PubMed Google Scholar

Chalkias, S. et al. Safety, immunogenicity and antibody persistence of a bivalent Beta-containing booster vaccine against COVID-19: a phase 2/3 trial. Nat Med 28, 23882397 (2022).

Chalkias, S. et al. A bivalent Omicron-containing booster vaccine against COVID-19. N. Engl. J. Med. 387, 12791291 (2022).

Article CAS PubMed Google Scholar

Zou, J. et al. Neutralization of BA.4BA.5, BA.4.6, BA.2.75.2, BQ.1.1 and XBB.1 with bivalent vaccine. N. Engl. J. Med. 388, 854857 (2023).

Article PubMed Google Scholar

Wang, Q. et al. Antibody response to Omicron BA.4BA.5 bivalent booster. N. Engl. J. Med. 388, 567569 (2023).

Article PubMed Google Scholar

Collier, A. Y. et al. Immunogenicity of BA.5 bivalent mRNA vaccine boosters. N. Engl. J. Med. 388, 565567 (2023).

Article PubMed Google Scholar

Read the rest here:

Immune imprinting and next-generation coronavirus vaccines - Nature.com

Related Posts
Tags: