Identification of shared pathogenetic mechanisms between COVID-19 and IC through bioinformatics and system … – Nature.com

Berry, S. H. et al. Prevalence of symptoms of bladder pain syndrome/interstitial cystitis among adult females in the United States. J. Urol. 186, 540544. https://doi.org/10.1016/j.juro.2011.03.132 (2011).

Article PubMed PubMed Central Google Scholar

Akiyama, Y., Homma, Y. & Maeda, D. Pathology and terminology of interstitial cystitis/bladder pain syndrome: A review. Histol. Histopathol. 34, 2532. https://doi.org/10.14670/hh-18-028 (2019).

Article CAS PubMed Google Scholar

Sant, G. R. & Theoharides, T. C. Interstitial cystitis. Curr. Opin. Urol. 9, 297302. https://doi.org/10.1097/00042307-199907000-00004 (1999).

Article CAS PubMed Google Scholar

Homma, Y. et al. Clinical guidelines for interstitial cystitis/bladder pain syndrome. Int. J. Urol. 27, 578589. https://doi.org/10.1111/iju.14234 (2020).

Article PubMed Google Scholar

Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 395, 565574. https://doi.org/10.1016/s0140-6736(20)30251-8 (2020).

Article CAS PubMed PubMed Central Google Scholar

Chilamakuri, R. & Agarwal, S. COVID-19: Characteristics and therapeutics. Cells https://doi.org/10.3390/cells10020206 (2021).

Article PubMed PubMed Central Google Scholar

Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497506. https://doi.org/10.1016/s0140-6736(20)30183-5 (2020).

Article CAS PubMed PubMed Central Google Scholar

Xu, D. et al. Persistent shedding of viable SARS-CoV in urine and stool of SARS patients during the convalescent phase. Eur. J. Clin. Microbiol. Infect. Dis. 24, 165171. https://doi.org/10.1007/s10096-005-1299-5 (2005).

Article CAS PubMed PubMed Central Google Scholar

Tiryaki, S., Egil, O., Birbilen, A. Z. & Buyukcam, A. COVID-19 associated lower urinary tract symptoms in children. J. Pediatr. Urol. 18(680), e681-680.e687. https://doi.org/10.1016/j.jpurol.2022.08.018 (2022).

Article Google Scholar

Dhar, N. et al. De novo urinary symptoms associated with COVID-19: COVID-19-associated cystitis. J. Clin. Med. Res. 12, 681682. https://doi.org/10.14740/jocmr4294 (2020).

Article MathSciNet CAS PubMed PubMed Central Google Scholar

Lamb, L. E. et al. COVID-19 inflammation results in urine cytokine elevation and causes COVID-19 associated cystitis (CAC). Med. Hypotheses 145, 110375. https://doi.org/10.1016/j.mehy.2020.110375 (2020).

Article CAS PubMed PubMed Central Google Scholar

Li, M. Y., Li, L., Zhang, Y. & Wang, X. S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect. Dis. Pov. 9, 45. https://doi.org/10.1186/s40249-020-00662-x (2020).

Article Google Scholar

Ehrenfeld, M. et al. Covid-19 and autoimmunity. Autoimmun. Rev. 19, 102597. https://doi.org/10.1016/j.autrev.2020.102597 (2020).

Article CAS PubMed PubMed Central Google Scholar

Szekanecz, Z. et al. COVID-19: Autoimmunity, multisystemic inflammation and autoimmune rheumatic patients. Expert Rev. Mol. Med. 24, e13. https://doi.org/10.1017/erm.2022.10 (2022).

Article CAS PubMed PubMed Central Google Scholar

Cavalcante-Silva, L. H. A. et al. Neutrophils and COVID-19: The road so far. Int. Immunopharmacol. 90, 107233. https://doi.org/10.1016/j.intimp.2020.107233 (2021).

Article CAS PubMed Google Scholar

Castanheira, F. V. S. & Kubes, P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood 133, 21782185. https://doi.org/10.1182/blood-2018-11-844530 (2019).

Article CAS PubMed Google Scholar

Edgar, R., Domrachev, M. & Lash, A. E. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207210. https://doi.org/10.1093/nar/30.1.207 (2002).

Article CAS PubMed PubMed Central Google Scholar

Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47. https://doi.org/10.1093/nar/gkv007 (2015).

Article CAS PubMed PubMed Central Google Scholar

Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics 16, 284287. https://doi.org/10.1089/omi.2011.0118 (2012).

Article CAS PubMed PubMed Central Google Scholar

Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 2730. https://doi.org/10.1093/nar/28.1.27 (2000).

Article CAS PubMed PubMed Central Google Scholar

Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 19471951. https://doi.org/10.1002/pro.3715 (2019).

Article CAS PubMed PubMed Central Google Scholar

Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587-d592. https://doi.org/10.1093/nar/gkac963 (2023).

Article CAS PubMed Google Scholar

Gene Ontology Consortium. Going forward. Nucleic Acids Res. 43, D1049-1056. https://doi.org/10.1093/nar/gku1179 (2015).

Article CAS Google Scholar

Szklarczyk, D. et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 51, D638-d646. https://doi.org/10.1093/nar/gkac1000 (2023).

Article CAS PubMed Google Scholar

Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 24982504. https://doi.org/10.1101/gr.1239303 (2003).

Article CAS PubMed PubMed Central Google Scholar

Chin, C. H. et al. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 8(Suppl 4), S11. https://doi.org/10.1186/1752-0509-8-s4-s11 (2014).

Article PubMed PubMed Central Google Scholar

Xia, J., Gill, E. E. & Hancock, R. E. NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat. Protoc. 10, 823844. https://doi.org/10.1038/nprot.2015.052 (2015).

Article CAS PubMed Google Scholar

Castro-Mondragon, J. A. et al. JASPAR 2022: The 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 50, D165-d173. https://doi.org/10.1093/nar/gkab1113 (2022).

Article CAS PubMed Google Scholar

Chou, C. H. et al. miRTarBase update 2018: A resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 46, D296-d302. https://doi.org/10.1093/nar/gkx1067 (2018).

Article CAS PubMed Google Scholar

Karagkouni, D. et al. DIANA-TarBase v8: A decade-long collection of experimentally supported miRNA-gene interactions. Nucleic Acids Res. 46, D239-d245. https://doi.org/10.1093/nar/gkx1141 (2018).

Article CAS PubMed Google Scholar

Piero, J. et al. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45, D833-d839. https://doi.org/10.1093/nar/gkw943 (2017).

Article CAS PubMed Google Scholar

Yoo, M. et al. DSigDB: Drug signatures database for gene set analysis. Bioinformatics 31, 30693071. https://doi.org/10.1093/bioinformatics/btv313 (2015).

Article CAS PubMed PubMed Central Google Scholar

Kuleshov, M. V. et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90-97. https://doi.org/10.1093/nar/gkw377 (2016).

Article CAS PubMed PubMed Central Google Scholar

Charoentong, P. et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 18, 248262. https://doi.org/10.1016/j.celrep.2016.12.019 (2017).

Article CAS PubMed Google Scholar

Hnzelmann, S., Castelo, R. & Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 14, 7. https://doi.org/10.1186/1471-2105-14-7 (2013).

Article Google Scholar

Robin, X. et al. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 12, 77. https://doi.org/10.1186/1471-2105-12-77 (2011).

Article Google Scholar

Lu, L. et al. Discovering common pathogenetic processes between COVID-19 and sepsis by bioinformatics and system biology approach. Front. Immunol. 13, 975848. https://doi.org/10.3389/fimmu.2022.975848 (2022).

Article CAS PubMed PubMed Central Google Scholar

Zhang, Y. et al. Identification of 3 key genes as novel diagnostic and therapeutic targets for OA and COVID-19. Front. Immunol. 14, 1167639. https://doi.org/10.3389/fimmu.2023.1167639 (2023).

Article CAS PubMed PubMed Central Google Scholar

Umakanthan, S. et al. Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19). Postgrad. Med. J. 96, 753758. https://doi.org/10.1136/postgradmedj-2020-138234 (2020).

Article CAS PubMed Google Scholar

Dhawan, A. et al. COVID-associated cystitis: The culprit behind the bladder woes post-COVID infection? A review. Int. Urol. Nephrol. https://doi.org/10.1007/s11255-023-03700-3 (2023).

Article PubMed Google Scholar

Wang, Y. & Perlman, S. COVID-19: Inflammatory profile. Annu. Rev. Med. 73, 6580. https://doi.org/10.1146/annurev-med-042220-012417 (2022).

Article CAS PubMed Google Scholar

Merad, M., Blish, C. A., Sallusto, F. & Iwasaki, A. The immunology and immunopathology of COVID-19. Science 375, 11221127. https://doi.org/10.1126/science.abm8108 (2022).

Article CAS PubMed ADS Google Scholar

Peng, L. et al. Integrating single-cell RNA sequencing with spatial transcriptomics reveals immune landscape for interstitial cystitis. Signal Transd. Target. Ther. 7, 161. https://doi.org/10.1038/s41392-022-00962-8 (2022).

Article CAS Google Scholar

Ashraf, U. M. et al. SARS-CoV-2, ACE2 expression, and systemic organ invasion. Physiol. Genom. 53, 5160. https://doi.org/10.1152/physiolgenomics.00087.2020 (2021).

Article CAS Google Scholar

Muralidar, S., Ambi, S. V., Sekaran, S. & Krishnan, U. M. The emergence of COVID-19 as a global pandemic: Understanding the epidemiology, immune response and potential therapeutic targets of SARS-CoV-2. Biochimie 179, 85100. https://doi.org/10.1016/j.biochi.2020.09.018 (2020).

Article CAS PubMed PubMed Central Google Scholar

Kempuraj, D. et al. COVID-19, mast cells, cytokine storm, psychological stress, and neuroinflammation. Neuroscientist 26, 402414. https://doi.org/10.1177/1073858420941476 (2020).

Article CAS PubMed Google Scholar

Azkur, A. K. et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy 75, 15641581. https://doi.org/10.1111/all.14364 (2020).

Article CAS PubMed Google Scholar

Yu, W. R., Jiang, Y. H., Jhang, J. F. & Kuo, H. C. Use of urinary cytokine and chemokine levels for identifying bladder conditions and predicting treatment outcomes in patients with interstitial cystitis/bladder pain syndrome. Biomedicines https://doi.org/10.3390/biomedicines10051149 (2022).

Article PubMed PubMed Central Google Scholar

Malik, S. T. et al. Distribution of mast cell subtypes in interstitial cystitis: Implications for novel diagnostic and therapeutic strategies?. J. Clin. Pathol. 71, 840844. https://doi.org/10.1136/jclinpath-2017-204881 (2018).

Article PubMed Google Scholar

Li, D. P. et al. LILRB2/PirB mediates macrophage recruitment in fibrogenesis of nonalcoholic steatohepatitis. Nat. Commun. 14, 4436. https://doi.org/10.1038/s41467-023-40183-3 (2023).

Article CAS PubMed PubMed Central ADS Google Scholar

See the original post here:

Identification of shared pathogenetic mechanisms between COVID-19 and IC through bioinformatics and system ... - Nature.com

Related Posts
Tags: