Identification of cross reactive T cell responses in adenovirus based COVID 19 vaccines | npj Vaccines – Nature.com

Voysey, M. et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 397, 99111 (2021).

Article CAS PubMed PubMed Central Google Scholar

Sadoff, J. et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. N. Engl. J. Med. 384, 21872201 (2021).

Article CAS PubMed Google Scholar

Polack, F. P. et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 383, 26032615 (2020).

Article CAS PubMed Google Scholar

Dicks, M. D. et al. A novel chimpanzee adenovirus vector with low human seroprevalence: improved systems for vector derivation and comparative immunogenicity. PLoS One 7, e40385 (2012).

Article CAS PubMed PubMed Central Google Scholar

Alter, G. et al. Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans. Nature 596, 268272 (2021).

Article CAS PubMed PubMed Central Google Scholar

Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 20, 817838 (2021).

Article CAS PubMed PubMed Central Google Scholar

Sahin, U. et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 586, 594599 (2020).

Article CAS PubMed Google Scholar

Ewer, K. J. et al. T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a phase 1/2 clinical trial. Nat. Med. 27, 270278 (2021).

Article CAS PubMed Google Scholar

van de Munckhof, A. et al. Declining mortality of cerebral venous sinus thrombosis with thrombocytopenia after SARS-CoV-2 vaccination. Eur. J. Neurol. 29, 339344 (2022).

Article PubMed Google Scholar

Toh, C. H., Wang, G. & Parker, A. L. The aetiopathogenesis of vaccine-induced immune thrombotic thrombocytopenia. Clin. Med. 22, 140144 (2022).

Article Google Scholar

Makris, M. & Pavord, S. Most cases of Thrombosis and Thrombocytopenia Syndrome (TTS) post ChAdOx-1 nCov-19 are Vaccine-induced Immune Thrombotic Thrombocytopenia (VITT). Lancet Reg. Health Eur. 12, 100274 (2022).

Article PubMed Google Scholar

Michalik, S. et al. Comparative analysis of ChAdOx1 nCoV-19 and Ad26.COV2.S SARS-CoV-2 vector vaccines. Haematologica 107, 947957 (2022).

Article CAS PubMed PubMed Central Google Scholar

Nicholson, M., Goubran, H., Chan, N. & Siegal, D. No apparent association between mRNA COVID-19 vaccination and venous thromboembolism. Blood Rev. 56, 100970 (2022).

Article CAS PubMed PubMed Central Google Scholar

See, I. et al. Case Series of Thrombosis With Thrombocytopenia Syndrome After COVID-19 Vaccination-United States, December 2020 to August 2021. Ann. Intern. Med. 175, 513522 (2022).

Article PubMed Google Scholar

Thiele, T. et al. Laboratory confirmed vaccine-induced immune thrombotic thrombocytopenia: Retrospective analysis of reported cases after vaccination with ChAdOx-1 nCoV-19 in Germany. Lancet Reg. Health Eur. 12, 100270 (2022).

Article PubMed Google Scholar

Castells, M. C. & Phillips, E. J. Maintaining Safety with SARS-CoV-2 Vaccines. N. Engl. J. Med. 384, 643649 (2020).

Article PubMed Google Scholar

Tanno, L. K., Berard, F., Beaudoin, E., Didier, A. & Demoly, P. SARS-CoV-2 Vaccination and Anaphylaxis: Recommendations of the French Allergy Community and the Montpellier World Health Organization Collaborating Center. Vaccines 9, 560 (2021).

Article CAS PubMed PubMed Central Google Scholar

Caballero, M. L. & Quirce, S. Excipients as Potential Agents of Anaphylaxis in Vaccines: Analyzing the Formulations of Currently Authorized COVID-19 Vaccines. J. Investig. Allergol. Clin. Immunol. 31, 9293 (2021).

Article CAS PubMed Google Scholar

OConnor, T., OCallaghan-Maher, M., Ryan, P. & Gibson, G. Drug reaction with eosinophilia and systemic symptoms syndrome following vaccination with the AstraZeneca COVID-19 vaccine. JAAD Case Rep. 20, 1416 (2022).

Article PubMed Google Scholar

Seque, C. A., Enokihara, M., Nascimento, M. M., Porro, A. M. & Tomimori, J. Rare cutaneous reactions after ChAdOx1 (Oxford-AstraZeneca) vaccine: 12 case series from Brazil. J. Eur. Acad. Dermatol Venereol. 36, e601e603 (2022).

Article CAS PubMed PubMed Central Google Scholar

Kim, J. E. et al. Delayed cutaneous reaction to ChAdOx1 nCoV-19 vaccine: Is it an AstraZeneca arm? J. Eur. Acad. Dermatol. Venereol. 35, e711e714 (2021).

Article CAS PubMed PubMed Central Google Scholar

Sprute, R., Schumacher, S., Pauls, M., Pauls, W. & Cornely, O. A. Delayed Cutaneous Hypersensitivity Reaction to Vaxzevria (ChAdOx1-S) Vaccine against SARS-CoV-2. Drugs R. D. 21, 371374 (2021).

Article CAS PubMed PubMed Central Google Scholar

Mendona, S. A., Lorincz, R., Boucher, P. & Curiel, D. T. Adenoviral vector vaccine platforms in the SARS-CoV-2 pandemic. npj Vaccines 6, 97 (2021).

Article PubMed PubMed Central Google Scholar

Barouch, D. H. et al. International seroepidemiology of adenovirus serotypes 5, 26, 35, and 48 in pediatric and adult populations. Vaccine 29, 52035209 (2011).

Article CAS PubMed PubMed Central Google Scholar

Yu, B. et al. Seroprevalence of neutralizing antibodies to human adenovirus type 5 in healthy adults in China. J. Med. Virol. 84, 14081414 (2012).

Article CAS PubMed Google Scholar

Hillis, W. D. & Goodman, R. Serologic Classification of Chimpanzee Adenoviruses by Hemagglutination and Hemagglutination Inhibition1. J. Immunol. 103, 10891095 (1969).

Article CAS PubMed Google Scholar

Byazrova, M. G. et al. Anti-Ad26 humoral immunity does not compromise SARS-COV-2 neutralizing antibody responses following Gam-COVID-Vac booster vaccination. npj Vaccines 7, 145 (2022).

Article CAS PubMed PubMed Central Google Scholar

Pichler, W. J. & Tilch, J. The lymphocyte transformation test in the diagnosis of drug hypersensitivity. Allergy 59, 809820 (2004).

Article CAS PubMed Google Scholar

Xiang, Z. et al. Chimpanzee adenovirus antibodies in humans, sub-Saharan Africa. Emerg. Infect. Dis. 12, 15961599 (2006).

Article CAS PubMed PubMed Central Google Scholar

Almuqrin, A. et al. SARS-CoV-2 vaccine ChAdOx1 nCoV-19 infection of human cell lines reveals low levels of viral backbone gene transcription alongside very high levels of SARS-CoV-2 S glycoprotein gene transcription. Genome Med. 13, 43 (2021).

Article CAS PubMed PubMed Central Google Scholar

Greinacher, A. et al. Insights in ChAdOx1 nCoV-19 vaccine-induced immune thrombotic thrombocytopenia. Blood 138, 22562268 (2021).

Article CAS PubMed PubMed Central Google Scholar

Krutzke, L. et al. Process- and product-related impurities in the ChAdOx1 nCov-19 vaccine. eLife 11, e78513 (2022).

Article CAS PubMed PubMed Central Google Scholar

Henry, L. J., Xia, D., Wilke, M. E., Deisenhofer, J. & Gerard, R. D. Characterization of the knob domain of the adenovirus type 5 fiber protein expressed in Escherichia coli. J. Virol. 68, 52395246 (1994).

Article CAS PubMed PubMed Central Google Scholar

Baker, A. T. et al. ChAdOx1 interacts with CAR and PF4 with implications for thrombosis with thrombocytopenia syndrome. Sci. Adv. 7, eabl8213 (2021).

Article PubMed PubMed Central Google Scholar

Geisbert, T. W. et al. Recombinant Adenovirus Serotype 26 (Ad26) and Ad35 Vaccine Vectors Bypass Immunity to Ad5 and Protect Nonhuman Primates against Ebolavirus Challenge. J. Virol. 85, 42224233 (2011).

Article CAS PubMed PubMed Central Google Scholar

Purkayastha, A. et al. Genomic and bioinformatics analysis of HAdV-4, a human adenovirus causing acute respiratory disease: implications for gene therapy and vaccine vector development. J. Virol. 79, 25592572 (2005).

Article CAS PubMed PubMed Central Google Scholar

Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 5460 (1996).

Article CAS PubMed Google Scholar

Abbink, P. et al. Comparative seroprevalence and immunogenicity of six rare serotype recombinant adenovirus vaccine vectors from subgroups B and D. J. Virol. 81, 46544663 (2007).

Article CAS PubMed PubMed Central Google Scholar

Hemmi, M. et al. The early activation of CD8+ T cells is dependent on type I IFN signaling following intramuscular vaccination of adenovirus vector. Biomed. Res. Int. 2014, 158128158128 (2014).

Article PubMed PubMed Central Google Scholar

Shrestha, B. & Diamond, M. S. Fas ligand interactions contribute to CD8+ T-cell-mediated control of West Nile virus infection in the central nervous system. J. Virol. 81, 1174911757 (2007).

Article CAS PubMed PubMed Central Google Scholar

Herv, C., Laupze, B., Del Giudice, G., Didierlaurent, A. M. & Tavares Da Silva, F. The hows and whats of vaccine reactogenicity. npj Vaccines 4, 39 (2019).

Article PubMed PubMed Central Google Scholar

Heo, J. Y. et al. COVID-19 vaccine type-dependent differences in immunogenicity and inflammatory response: BNT162b2 and ChAdOx1 nCoV-19. Front. Immunol. 13, 975363 (2022).

Article CAS PubMed PubMed Central Google Scholar

Sette, A. & Crotty, S. Immunological memory to SARS-CoV-2 infection and COVID-19 vaccines. Immunol. Rev. 310, 2746 (2022).

Article CAS PubMed Google Scholar

Hurme, A. et al. Long-Lasting T Cell Responses in BNT162b2 COVID-19 mRNA Vaccinees and COVID-19 Convalescent Patients. Front. Immunol. 13, 869990 (2022).

Article CAS PubMed PubMed Central Google Scholar

Tang, J. et al. Adenovirus hexon T-cell epitope is recognized by most adults and is restricted by HLA DP4, the most common class II allele. Gene Ther. 11, 14081415 (2004).

Article CAS PubMed Google Scholar

Tischer, S. et al. Discovery of immunodominant T-cell epitopes reveals penton protein as a second immunodominant target in human adenovirus infection. J. Transl. Med. 14, 286 (2016).

Article PubMed PubMed Central Google Scholar

Garrido, J. L. et al. IgG targeting distinct seasonal coronavirus- conserved SARS-CoV-2 spike subdomains correlates with differential COVID-19 disease outcomes. Cell Rep. 39, 110904 (2022).

Article CAS PubMed PubMed Central Google Scholar

Uusi-Kerttula, H. et al. Incorporation of Peptides Targeting EGFR and FGFR1 into the Adenoviral Fiber Knob Domain and Their Evaluation as Targeted Cancer Therapies. Hum. Gene Ther. 26, 320329 (2015).

Article CAS PubMed PubMed Central Google Scholar

See the original post here:

Identification of cross reactive T cell responses in adenovirus based COVID 19 vaccines | npj Vaccines - Nature.com

Related Posts
Tags: