Strategies to reduce the risks of mRNA drug and vaccine toxicity – Nature.com
January 28, 2024
Barouch, D. H. Covid-19 vaccines - immunity, variants, boosters. N. Engl. J. Med. 387, 10111020 (2022).
Article CAS PubMed Google Scholar
El Sahly, H. M. et al. Efficacy of the mRNA-1273 SARS-CoV-2 vaccine at completion of blinded phase. N. Engl. J. Med. 385, 17741785 (2021).
Article CAS PubMed Google Scholar
Thomas, S. J. et al. Efficacy and safety of the BNT162b2 mRNA COVID-19 vaccine in participants with a history of cancer: subgroup analysis of a global phase 3 randomized clinical trial. Vaccine 40, 14831492 (2022).
Article CAS PubMed Google Scholar
Rouf, N. Z., Biswas, S., Tarannum, N., Oishee, L. M. & Muna, M. M. Demystifying mRNA vaccines: an emerging platform at the forefront of cryptic diseases. RNA Biol. 19, 386410 (2022).
Article CAS PubMed PubMed Central Google Scholar
Chalkias, S. et al. A bivalent omicron-containing booster vaccine against Covid-19. N. Engl. J. Med. 387, 12791291 (2022).
Article CAS PubMed Google Scholar
Verma, M. et al. The landscape for lipid-nanoparticle-based genomic medicines. Nat. Rev. Drug. Discov. 22, 349350 (2023).
Article CAS PubMed Google Scholar
CONGRESS.GOV. S.5002 - FDA Modernization Act 2.0. https://congress.gov/bill117th-congress/senate-bill/5002 (2022).
Ingber, D. E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat. Rev. Genet. 23, 467491 (2022).
Article CAS PubMed PubMed Central Google Scholar
Granot, Y. & Peer, D. Delivering the right message: challenges and opportunities in lipid nanoparticles-mediated modified mRNA therapeutics-an innate immune system standpoint. Semin. Immunol. 34, 6877 (2017).
Article CAS PubMed Google Scholar
Duan, Q. et al. How far are the new wave of mRNA drugs from us? mRNA product current perspective and future development. Front. Immunol. 13, 974433 (2022).
Article CAS PubMed PubMed Central Google Scholar
Igyarto, B. Z., Jacobsen, S. & Ndeupen, S. Future considerations for the mRNA-lipid nanoparticle vaccine platform. Curr. Opin. Virol. 48, 6572 (2021).
Article CAS PubMed PubMed Central Google Scholar
Moghimi, S. M. & Simberg, D. Pro-inflammatory concerns with lipid nanoparticles. Mol. Ther. 30, 21092110 (2022).
Article CAS PubMed PubMed Central Google Scholar
Kenjo, E. et al. Low immunogenicity of LNP allows repeated administrations of CRISPRCas9 mRNA into skeletal muscle in mice. Nat. Commun. 12, 7101 (2021).
Article CAS PubMed PubMed Central Google Scholar
Guerrini, G. et al. Monitoring anti-PEG antibodies level upon repeated lipid nanoparticle-based COVID-19 vaccine administration. Int. J. Mol. Sci. 23, 8838 (2022).
Article CAS PubMed PubMed Central Google Scholar
Verbeke, R., Hogan, M. J., Lore, K. & Pardi, N. Innate immune mechanisms of mRNA vaccines. Immunity 55, 19932005 (2022). This article describes the current understanding of how both mRNA and its LNP carrier contribute to the immune response elicited by mRNA vaccines, with the LNP acting as a potent adjuvant.
Article CAS PubMed PubMed Central Google Scholar
Tenchov, R., Bird, R., Curtze, A. E. & Zhou, Q. Lipid nanoparticles from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 15, 1698217015 (2021).
Article CAS PubMed Google Scholar
Li, D. et al. Messenger RNA-based therapeutics and vaccines: whats beyond COVID-19? ACS Pharmacol. Transl. Sci. 6, 943969 (2023).
Article CAS PubMed Google Scholar
Huang, X. et al. The landscape of mRNA nanomedicine. Nat. Med. 28, 22732287 (2022).
Article CAS PubMed Google Scholar
Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-B by Toll-like receptor 3. Nature 413, 732738 (2001).
Article CAS PubMed Google Scholar
Kariko, K., Ni, H., Capodici, J., Lamphier, M. & Weissman, D. mRNA is an endogenous ligand for Toll-like receptor 3. J. Biol. Chem. 279, 1254212550 (2004).
Article CAS PubMed Google Scholar
Panda, D. et al. IRF1 maintains optimal constitutive expression of antiviral genes and regulates the early antiviral response. Front. Immunol. 10, 1019 (2019).
Article CAS PubMed PubMed Central Google Scholar
Kobayashi, K. et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110, 191202 (2002).
Article CAS PubMed Google Scholar
Cheng, K., Wang, X. & Yin, H. Small-molecule inhibitors of the TLR3/dsRNA complex. J. Am. Chem. Soc. 133, 37643767 (2011).
Article CAS PubMed PubMed Central Google Scholar
Bernard, J. J. et al. Ultraviolet radiation damages self noncoding RNA and is detected by TLR3. Nat. Med. 18, 12861290 (2012).
Article CAS PubMed Google Scholar
Hornung, V., Barchet, W., Schlee, M. & Hartmann, G. in Toll-like receptors (TLRs) and Innate Immunity (eds Bauer, S. & Hartmann, G.) 7186. Handbook of Experimental Pharmacology series https://doi.org/10.1007/978-3-540-72167-3_4 (Springer, 2008).
Weissman, D. et al. HIV gag mRNA transfection of dendritic cells (DC) delivers encoded antigen to MHC class I and II molecules, causes DC maturation, and induces a potent human in vitro primary immune response. J. Immunol. 165, 47104717 (2000).
Article CAS PubMed Google Scholar
Koski, G. K. et al. Cutting edge: innate immune system discriminates between RNA containing bacterial versus eukaryotic structural features that prime for high-level IL-12 secretion by dendritic cells. J. Immunol. 172, 39893993 (2004).
Article CAS PubMed Google Scholar
Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 15291531 (2004).
Article CAS PubMed Google Scholar
Heil, F. et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 15261529 (2004).
Article CAS PubMed Google Scholar
Zhang, Z. et al. Structural analysis reveals that Toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity 45, 737748 (2016).
Article CAS PubMed Google Scholar
Tanji, H. et al. Toll-like receptor 8 senses degradation products of single-stranded RNA. Nat. Struct. Mol. Biol. 22, 109115 (2015).
Article CAS PubMed Google Scholar
Guo, S. et al. Size, shape, and sequence-dependent immunogenicity of RNA nanoparticles. Mol. Ther. Nucleic Acids 9, 399408 (2017).
Article CAS PubMed PubMed Central Google Scholar
Mu, X., Greenwald, E., Ahmad, S. & Hur, S. An origin of the immunogenicity of in vitro transcribed RNA. Nucleic Acids Res. 46, 52395249 (2018).
Article CAS PubMed PubMed Central Google Scholar
Bui, T. M., Wiesolek, H. L. & Sumagin, R. ICAM-1: a master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J. Leukoc. Biol. 108, 787799 (2020).
Article CAS PubMed Google Scholar
Mu, X. & Hur, S. Immunogenicity of in vitro-transcribed RNA. Acc. Chem. Res. 54, 40124023 (2021).
Article CAS PubMed PubMed Central Google Scholar
Schlake, T., Thess, A., Fotin-Mleczek, M. & Kallen, K. J. Developing mRNA-vaccine technologies. RNA Biol. 9, 13191330 (2012).
Article CAS PubMed PubMed Central Google Scholar
Verbeke, R., Lentacker, I., De Smedt, S. C. & Dewitte, H. Three decades of messenger RNA vaccine development. Nano Today 28, 100766 (2019).
Article CAS Google Scholar
Vierbuchen, T., Stein, K. & Heine, H. RNA is taking its toll: impact of RNA-specific Toll-like receptors on health and disease. Allergy 74, 223235 (2019).
Article PubMed Google Scholar
Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165175 (2005). In this seminal article, it is shown that incorporation of modified nucleosides or pseudouridine in IVT mRNA ablates their immunogenicity against dendritic cells and other TLR-presenting cells.
Article CAS PubMed Google Scholar
Kormann, M. S. et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat. Biotechnol. 29, 154157 (2011).
Article CAS PubMed Google Scholar
Kariko, K., Muramatsu, H., Ludwig, J. & Weissman, D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 39, e142 (2011).
Article CAS PubMed PubMed Central Google Scholar
Kariko, K., Muramatsu, H., Keller, J. M. & Weissman, D. Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol. Ther. 20, 948953 (2012).
Article CAS PubMed PubMed Central Google Scholar
Weissman, D. mRNA transcript therapy. Expert Rev. Vaccines 14, 265281 (2015).
Article CAS PubMed Google Scholar
Holtkamp, S. et al. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 108, 40094017 (2006).
Article CAS PubMed Google Scholar
Schuberth-Wagner, C. et al. A conserved histidine in the RNA sensor RIG-I controls immune tolerance to N1-2 O-methylated self RNA. Immunity 43, 4151 (2015).
Article CAS PubMed PubMed Central Google Scholar
Abbas, Y. M. et al. Structure of human IFIT1 with capped RNA reveals adaptable mRNA binding and mechanisms for sensing N1 and N2 ribose 2-O methylations. Proc. Natl Acad. Sci. USA 114, E2106E2115 (2017).
Article CAS PubMed PubMed Central Google Scholar
Andries, O. et al. N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J. Control. Release 217, 337344 (2015).
Article CAS PubMed Google Scholar
Baiersdrfer, M. et al. A facile method for the removal of dsRNA contaminant from in vitro-transcribed mRNA. Mol. Ther. Nucleic Acids 15, 2635 (2019).
Article PubMed PubMed Central Google Scholar
Dousis, A., Ravichandran, K., Hobert, E. M., Moore, M. J. & Rabideau, A. E. An engineered T7 RNA polymerase that produces mRNA free of immunostimulatory byproducts. Nat. Biotechnol. 41, 560568 (2022).
Article PubMed PubMed Central Google Scholar
Nelson, J. et al. Impact of mRNA chemistry and manufacturing process on innate immune activation. Sci. Adv. 6, eaaz6893 (2020).
Article CAS PubMed PubMed Central Google Scholar
Qin, S. et al. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct. Target. Ther. 7, 166 (2022). This review provides an in-depth description of the principles of action of mRNA-based drugs at the molecular level.
Article CAS PubMed PubMed Central Google Scholar
See the original post:
Strategies to reduce the risks of mRNA drug and vaccine toxicity - Nature.com