Neurofilament light chain and glial fibrillary acid protein levels are elevated in post-mild COVID-19 or asymptomatic … – Nature.com
March 18, 2024
Niazkar, H. R., Zibaee, B., Nasimi, A. & Bahri, N. The neurological manifestations of COVID-19: A review article. Neurol. Sci. 41, 16671671 (2020).
Article PubMed PubMed Central Google Scholar
Stefanou, M. I. et al. Neurological manifestations of long-COVID syndrome: A narrative review. Ther. Adv. Chronic Dis. 13, 20406223221076890. https://doi.org/10.1177/20406223221076890 (2022).
Article PubMed PubMed Central Google Scholar
Kurushina, O. V. & Barulin, A. E. Central nervous system lesions in COVID-19. Neurosci. Behav. Physiol. 51, 12221227. https://doi.org/10.1007/s11055-021-01183-2 (2021).
Article CAS PubMed Google Scholar
Khalil, M. et al. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 14, 577589. https://doi.org/10.1038/s41582-018-0058-z (2018).
Article CAS PubMed Google Scholar
Barro, C. et al. Serum GFAP and NfL levels differentiate subsequent progression and disease activity in patients with progressive multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 10, e200052. https://doi.org/10.1212/NXI.0000000000200052 (2022).
Article PubMed PubMed Central Google Scholar
Andreasson, U., Blennow, K. & Zetterberg, H. Update on ultrasensitive technologies to facilitate research on blood biomarkers for central nervous system disorders. Alzheimers Dement. 3, 98102. https://doi.org/10.1016/j.dadm.2016.05.005 (2016).
Article Google Scholar
Frontera, J. A. et al. Comparison of serum neurodegenerative biomarkers among hospitalized COVID-19 patients versus non-COVID subjects with normal cognition, mild cognitive impairment, or Alzheimers dementia. Alzheimers Dement. 18, 899910. https://doi.org/10.1002/alz.12556 (2022).
Article CAS PubMed Google Scholar
Plantone, D. et al. Brain neuronal and glial damage during acute COVID-19 infection in the absence of clinical neurological manifestations. J. Neurol. Neurosurg. Psychiatry 93, 13431348. https://doi.org/10.1136/jnnp-2022-329933 (2022).
Article PubMed Google Scholar
Verde, F. et al. Serum neurofilament light chain levels in COVID-19 patients without major neurological manifestations. J. Neurol. 269, 56915701 (2022).
Article CAS PubMed PubMed Central Google Scholar
Virhammar, J. et al. Biomarkers for central nervous system injury in cerebrospinal fluid are elevated in COVID-19 and associated with neurological symptoms and disease severity. Eur. J. Neurol. 28, 33243331. https://doi.org/10.1111/ene.14703 (2021).
Article PubMed PubMed Central Google Scholar
Ameres, M. et al. Association of neuronal injury blood marker neurofilament light chain with mild-to-moderate COVID-19. J. Neurol. 267, 34763478. https://doi.org/10.1007/s00415-020-10050-y (2020).
Article CAS PubMed PubMed Central Google Scholar
Woo, M.S., Malsy, J., Pttgen, J., Seddiq Zai, S., Ufer, F. et al. Frequent neurocognitive deficits after recovery from mild COVID-19. Brain Commun. 2(2), fcaa205 https://doi.org/10.1093/braincomms/fcaa205 (2020).
Taskiran-Sag, A. et al. Subacute neurological sequelae in mild COVID-19 outpatients. Tuberk Toraks 70(1), 2736. https://doi.org/10.5578/tt.20229904 (2022) (English).
Article PubMed Google Scholar
Apple, A. C. et al. Risk factors and abnormal cerebrospinal fluid associate with cognitive symptoms after mild COVID-19. Ann. Clin. Transl. Neurol. 9(2), 221226. https://doi.org/10.1002/acn3.51498 (2022).
Article CAS PubMed PubMed Central Google Scholar
Hellmuth, J. et al. Persistent COVID-19-associated neurocognitive symptoms in non-hospitalized patients. J. Neurovirol. 27(1), 191195. https://doi.org/10.1007/s13365-021-00954-4 (2021).
Article CAS PubMed PubMed Central Google Scholar
Owens, C. D. et al. Vascular mechanisms leading to progression of mild cognitive impairment to dementia after COVID-19: Protocol and methodology of a prospective longitudinal observational study. PLoS One. 18(8), e0289508. https://doi.org/10.1371/journal.pone.0289508 (2023).
Article CAS PubMed PubMed Central Google Scholar
Arnetz, J. E., Arble, E., Sudan, S. & Arnetz, B. B. Workplace cognitive failure among nurses during the COVID-19 pandemic. Int J Environ Res Public Health 18, 10394. https://doi.org/10.3390/ijerph181910394 (2021).
Article CAS PubMed PubMed Central Google Scholar
Mattioli, F. et al. Neurological and cognitive sequelae of Covid-19: A four-month follow-up. J Neurol 268, 44224428. https://doi.org/10.1007/s00415-021-10579-6 (2021).
Article CAS PubMed PubMed Central Google Scholar
Alicandro, G., Gerli, A. G., Remuzzi, G., Centanni, S. & La Vecchia, C. Updated estimates of excess total mortality in Italy during the circulation of the BA.2 and BA.45 Omicron variants: April-July 2022. Med Lav 113, e2022046. https://doi.org/10.23749/mdl.v113i5.13825 (2022).
Article PubMed PubMed Central Google Scholar
Stufano, A. et al. Oxidative damage and post-COVID syndrome: A cross-sectional study in a cohort of Italian workers. Int J Mol Sci. 24(8), 7445. https://doi.org/10.3390/ijms24087445 (2023).
Article PubMed PubMed Central Google Scholar
Global Burden of Disease Long COVID Collaborators. Estimated global proportions of individuals with persistent fatigue, cognitive, and respiratory symptom clusters following symptomatic COVID-19 in 2020 and 2021. JAMA 328(16), 16041615. https://doi.org/10.1001/jama.2022.18931 (2022).
Article PubMed Central Google Scholar
WHO Working Group on the Clinical Characterisation and Management of COVID-19 Infection. A minimal common outcome measure set for COVID-19 clinical research. Lancet Infect. Dis. 20, e192e197 https://doi.org/10.1016/S1473-3099(20)30483-7 (2020).
CDC. Division of Population Health, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention https://www.cdc.gov/alcohol/checkyourdrinking/index (2023).
Corsi, G., Nava, S. & Barco, S. Un nuovo strumento per misurare lo stato funzionale globale a lungo termine dei pazienti con malattia da coronavirus 2019: la scala PCFS (Post-COVID-19 Functional Status) [A novel tool to monitor the individual functional status after COVID-19: the Post-COVID-19 Functional Status (PCFS) scale]. G Ital. Cardiol. (Rome) 21, 757. https://doi.org/10.1714/3431.34198 (2020).
Article PubMed Google Scholar
Mazzotti, E. et al. II Patient Health Questionnaire (PHQ) per lo screening dei disturbi psichiatrici: Uno studio di validazione nei confronti della Intervista Clinica Strutturata per il DSM-IV asse I (SCID-I). Ital. J. Psychopathol. 9, 122 (2003).
Google Scholar
Stratta, P., Rinaldi, O., Daneluzzo, E. & Rossi, A. Utilizzo della versione Italiana del Cognitive Failures Questionnaire (CFQ) in un campione di studenti: uno studio di validazione. Riv. Psichiatr. 41, 260265 (2006).
Google Scholar
Kroenke, K., Spitzer, R. L. & Williams, J. B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 16, 606613. https://doi.org/10.1046/j.1525-1497.2001.016009606.x (2001).
Article CAS PubMed PubMed Central Google Scholar
Broadbent, D. E., Cooper, P. F., FitzGerald, P. & Parkes, K. R. The Cognitive Failures Questionnaire (CFQ) and its correlates. Br. J. Clin. Psychol. 21, 116. https://doi.org/10.1111/j.2044-8260.1982.tb01421.x (1982).
Article CAS PubMed Google Scholar
Benkert, P. et al. Serum neurofilament light chain for individual prognostication of disease activity in people with multiple sclerosis: A retrospective modelling and validation study. Lancet Neurol. 21, 246257. https://doi.org/10.1016/S1474-4422(22)00009-6 (2022).
Article PubMed Google Scholar
Bergman, J. et al. Neurofilament light in CSF and serum is a sensitive marker for axonal white matter injury in MS. Neurol. Neuroimmunol. Neuroinflamm. 3, e271. https://doi.org/10.1212/NXI.0000000000000271 (2016).
Article PubMed PubMed Central Google Scholar
Pezzini, A. & Padovani, A. Lifting the mask on neurological manifestations of COVID-19. Nat. Rev. Neurol. 16, 636644. https://doi.org/10.1038/s41582-020-0398-3 (2020).
Article CAS PubMed PubMed Central Google Scholar
Zetterberg, H. & Blennow, K. From cerebrospinal fluid to blood: The third wave of fluid biomarkers for Alzheimers disease. J. Alzheimers Dis. 64, S271S279. https://doi.org/10.3233/JAD-179926 (2018).
Article PubMed Google Scholar
Papa, L. et al. Time course and diagnostic accuracy of glial and neuronal blood biomarkers GFAP and UCH-L1 in a large cohort of trauma patients with and without mild traumatic brain injury. JAMA Neurol. 73, 551560. https://doi.org/10.1001/jamaneurol.2016.0039 (2016).
Article PubMed PubMed Central Google Scholar
Thelin, E. P. et al. Serial sampling of serum protein biomarkers for monitoring human traumatic brain injury dynamics: A systematic review. Front. Neurol. 8, 300. https://doi.org/10.3389/fneur.2017.00300 (2017).
Article PubMed PubMed Central Google Scholar
Welch, R. D. et al. Modeling the kinetics of serum glial fibrillary acidic protein, ubiquitin carboxyl-terminal hydrolase-L1, and S100B concentrations in patients with traumatic brain injury. J. Neurotrauma 34, 19571971. https://doi.org/10.1089/neu.2016.4772 (2017).
Article PubMed PubMed Central Google Scholar
Baig, A. M., Khaleeq, A., Ali, U. & Syeda, H. Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, hostvirus interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci. 11, 995998. https://doi.org/10.1021/acschemneuro.0c00122 (2020).
Article CAS PubMed Google Scholar
Boroujeni, M. E. et al. Inflammatory response leads to neuronal death in human post-mortem cerebral cortex in patients with COVID-19. ACS Chem. Neurosci. 12, 21432150. https://doi.org/10.1021/acschemneuro.1c00111 (2021).
Article CAS PubMed Google Scholar
Gupta, A. et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 26, 10171032. https://doi.org/10.1038/s41591-020-0968-3 (2020).
Article CAS PubMed Google Scholar
Peluso, M. J. et al. Plasma markers of neurologic injury and inflammation in people with self-reported neurologic postacute sequelae of SARS-CoV-2 infection. Neurol. Neuroimmunol. Neuroinflamm. 9(5), e200003. https://doi.org/10.1212/NXI.0000000000200003.PMID:35701186 (2022).
Article PubMed PubMed Central Google Scholar
Kanberg, N. et al. Neurochemical signs of astrocytic and neuronal injury in acute COVID-19 normalizes during long-term follow-up. EBioMedicine 70, 103512. https://doi.org/10.1016/j.ebiom.2021.103512 (2021).
Article CAS PubMed PubMed Central Google Scholar
Newcombe, V. F. J. et al. Post-acute blood biomarkers and disease progression in traumatic brain injury. Brain 145(6), 20642076. https://doi.org/10.1093/brain/awac126 (2022).
Article PubMed PubMed Central Google Scholar
Bark, L. et al. Central nervous system biomarkers GFAp and NfL associate with post-acute cognitive impairment and fatigue following critical COVID-19. Sci. Rep. 13(1), 13144. https://doi.org/10.1038/s41598-023-39698-y (2023).
Article ADS CAS PubMed PubMed Central Google Scholar
Liu, T. C. et al. Perceived cognitive deficits in patients with symptomatic SARS-CoV-2 and their association with post-COVID-19 condition. JAMA Netw. Open 6, e2311974. https://doi.org/10.1001/jamanetworkopen.2023.11974 (2023).
Article PubMed PubMed Central Google Scholar
Tavares-Jnior, J. W. L. et al. COVID-19 associated cognitive impairment: A systematic review. Cortex 152, 7797. https://doi.org/10.1016/j.cortex.2022.04.006 (2022).
Article PubMed PubMed Central Google Scholar
Ferrucci, R. et al. Brain positron emission tomography (PET) and cognitive abnormalities one year after COVID-19. J. Neurol. 270, 18231834. https://doi.org/10.1007/s00415-022-11543-8 (2023).
Article CAS PubMed PubMed Central Google Scholar
Hosp, J. A. et al. Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain 144, 12631276. https://doi.org/10.1093/brain/awab009 (2021).
Article PubMed Google Scholar
Henneghan, A. M., Lewis, K. A., Gill, E. & Kesler, S. R. Cognitive impairment in non-critical, mild-to-moderate COVID-19 survivors. Front. Psychol. 17(13), 770459. https://doi.org/10.3389/fpsyg.2022.770459.PMID:35250714;PMCID:PMC8891805 (2022).
Article Google Scholar
Tavares-Jnior, J. W. L. et al. COVID-19 associated cognitive impairment: A systematic review. Cortex 152, 7797. https://doi.org/10.1016/j.cortex.2022.04.006 (2022).
Article PubMed PubMed Central Google Scholar
Baseler, H. A., Aksoy, M., Salawu, A., Green, A. & Asghar, A. U. R. The negative impact of COVID-19 on working memory revealed using a rapid online quiz. PLoS One 17(11), e0269353. https://doi.org/10.1371/journal.pone.0269353 (2022).
Article CAS PubMed PubMed Central Google Scholar
Quan, M. et al. Post-COVID cognitive dysfunction: Current status and research recommendations for high risk population. Lancet Reg. Health West Pac. 5(38), 100836. https://doi.org/10.1016/j.lanwpc.2023.100836 (2023).
Article Google Scholar
Beck, J. W. & Flow, A. The effects of contracting COVID-19 on cognitive failures at work: Implications for task performance and turnover intentions. Sci. Rep. 12, 8826. https://doi.org/10.1038/s41598-022-13051-1 (2022).
Article ADS CAS PubMed PubMed Central Google Scholar
Lu, X., Yu, H. & Shan, B. Relationship between employee mental health and job performance: Mediation role of innovative behavior and work engagement. Int. J. Environ. Res. Public Health 19(11), 6599. https://doi.org/10.3390/ijerph19116599 (2022).
Visit link:
Neurofilament light chain and glial fibrillary acid protein levels are elevated in post-mild COVID-19 or asymptomatic ... - Nature.com