24-Hour movement behaviours research during the COVID-19 … – BMC Public Health
November 8, 2023
Baloch S, Baloch MA, Zheng T, Pei X. The Coronavirus Disease 2019 (COVID-19) pandemic. Tohoku J Exp Med. 2020;250(4):2718. https://doi.org/10.1620/tjem.250.271.
Article CAS PubMed Google Scholar
Yamada M, Kimura Y, Ishiyama D, Otobe Y, Suzuki M, Koyama S, et al. Effect of the COVID-19 epidemic on physical activity in Community-Dwelling older adults in Japan: a cross-sectional online survey. J Nutr Health Aging. 2020;24(9):94850. https://doi.org/10.1007/s12603-020-1424-2.
Article CAS PubMed PubMed Central Google Scholar
Bates LC, Zieff G, Stanford K. COVID-19 impact on behaviors across the 24-Hour day in children and adolescents: physical activity, sedentary behavior, and Sleep. 2020, 7(9). https://doi.org/10.3390/children7090138.
Koohsari MJ, Nakaya T. Changes in Workers Sedentary and Physical Activity Behaviors in Response to the COVID-19 Pandemic and Their Relationships With Fatigue: Longitudinal Online Study. 2021, 7(3):e26293. https://doi.org/10.2196/26293.
Moore SA, Faulkner G, Rhodes RE, Brussoni M, Chulak-Bozzer T, Ferguson LJ, BEHAVIORAL NUTRITION AND PHYSICAL ACTIVITY. Impact of the COVID-19 virus outbreak on movement and play behaviours of Canadian children and youth: a national survey. Volume 17. INTERNATIONAL JOURNAL OF; 2020. 1https://doi.org/10.1186/s12966-020-00987-8.
Mitra R, Moore SA, Gillespie M, Faulkner G, Vanderloo LM, Chulak-Bozzer T, et al. Healthy movement behaviours in children and youth during the COVID-19 pandemic: exploring the role of the neighbourhood environment. Health Place. 2020;65. https://doi.org/10.1016/j.healthplace.2020.102418.
Kharel M, Sakamoto JL, Carandang RR, Ulambayar S, Shibanuma A, Yarotskaya E, et al. Impact of COVID-19 pandemic lockdown on movement behaviours of children and adolescents: a systematic review. BMJ GLOBAL HEALTH. 2022;7(1). https://doi.org/10.1136/bmjgh-2021-007190.
Tison GH, Avram R. Worldwide Effect of COVID-19 on physical activity: a descriptive study. 2020, 173(9):76770. https://doi.org/10.7326/m20-2665.
Ammar A, Brach M, Trabelsi K, Chtourou H. Effects of COVID-19 Home Confinement on eating Behaviour and physical activity: results of the ECLB-COVID19 International Online Survey. 2020, 12(6). https://doi.org/10.3390/nu12061583.
Lu N. The Significance of Loneliness in Later Life in the Context of COVID-19 Pandemic. 2022.
Scully JL, Disability, Disablism, COVID-19 Pandemic Triage. J Bioethical Inq. 2020;17(4):6015. https://doi.org/10.1007/s11673-020-10005-y.
Article Google Scholar
Tomata Y, Suzuki Y, Kawado M, Yamada H, Murakami Y, Mieno MN, et al. Long-term impact of the 2011 Great East Japan Earthquake and tsunami on functional disability among older people: a 3-year longitudinal comparison of disability prevalence among Japanese municipalities. Soc Sci Med. 2015;147:2969. https://doi.org/10.1016/j.socscimed.2015.11.016.
Article PubMed Google Scholar
Paterson DC, Ramage K, Moore SA, Riazi N, Tremblay MS, Faulkner G. Exploring the impact of COVID-19 on the movement behaviors of children and youth: a scoping review of evidence after the first year. J Sport Health Sci. 2021;10(6):67589. https://doi.org/10.1016/j.jshs.2021.07.001.
Article PubMed PubMed Central Google Scholar
Caputo EL, Reichert FF. Studies of physical activity and COVID-19 during the pandemic: a scoping review. J Phys Activity Health. 2020;17(12):127584. https://doi.org/10.1123/jpah.2020-0406.
Article Google Scholar
Rossi L, Behme N, Breuer C. Physical Activity of Children and Adolescents during the COVID-19 PandemicA Scoping Review. In: International journal of environmental research and public health. vol. 18; 2021.
Violant-Holz V, Gallego-Jimnez MG, Gonzlez-Gonzlez CS, Muoz-Violant S, Rodrguez MJ, Sansano-Nadal O et al. Psychological health and physical activity levels during the COVID-19 pandemic: a systematic review. In: Int J Environ Res Public Health. vol. 17; 2020.
Musa S, Elyamani R, Dergaa I. COVID-19 and screen-based sedentary behaviour: systematic review of digital screen time and metabolic syndrome in adolescents. PLoS ONE. 2022;17(3). https://doi.org/10.1371/journal.pone.0265560.
Knight RL, McNarry MA, Sheeran L, Runacres AW, Thatcher R, Shelley J et al. Moving Forward: understanding correlates of physical activity and sedentary behaviour during COVID-19An integrative review and Socioecological Approach. In: Int J Environ Res Public Health. vol. 18; 2021.
Christensen A, Bond S, McKenna J. The COVID-19 conundrum: keeping safe while becoming inactive. A rapid review of physical activity, sedentary behaviour, and exercise in adults by gender and age. PLoS ONE. 2022;17(1). https://doi.org/10.1371/journal.pone.0263053.
Camacho-Montano LR, Iranzo A, Martinez-Piedrola RM, Camacho-Montano LM, Huertas-Hoyas E, Serrada-Tejeda S, et al. Effects of COVID-19 home confinement on sleep in children: a review. Sleep Med Rev. 2022;62. https://doi.org/10.1016/j.smrv.2022.101596.
Neculicioiu VS, Colosi IA, Costache C, Sevastre-Berghian A, Clichici S. Time to Sleep?-A review of the impact of the COVID-19 pandemic on Sleep and Mental Health. Int J Environ Res Public Health. 2022;19(6). https://doi.org/10.3390/ijerph19063497.
Sharma M, Aggarwal S, Madaan P, Saini L, Bhutani M. Impact of COVID-19 pandemic on sleep in children and adolescents: a systematic review and meta-analysis. Sleep Med. 2021;84:25967. https://doi.org/10.1016/j.sleep.2021.06.002.
Article PubMed PubMed Central Google Scholar
Chaput JP, Carson V, Gray CE, Tremblay MS. Importance of all movement behaviors in a 24 hour period for overall health. Int J Environ Res Public Health. 2014;11(12):1257581. https://doi.org/10.3390/ijerph111212575.
Article PubMed PubMed Central Google Scholar
Tremblay MS, Carson V, Chaput JP, Connor Gorber S, Dinh T, Duggan M et al. Canadian 24-Hour Movement Guidelines for Children and Youth: An Integration of Physical Activity, Sedentary Behaviour, and Sleep. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme 2016, 41(6 Suppl 3):S311-327. https://doi.org/10.1139/apnm-2016-0151.
Ross R, Chaput JP, Giangregorio LM, Janssen I, Saunders TJ, Kho ME et al. Canadian 24-Hour Movement Guidelines for Adults aged 1864 years and Adults aged 65 years or older: an integration of physical activity, sedentary behaviour, and sleep. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme 2020, 45(10 (Suppl. 2)):S57-s102. https://doi.org/10.1139/apnm-2020-0467.
Tremblay MS, Chaput JP, Adamo KB, Aubert S, Barnes JD, Choquette L, et al. Canadian 24-Hour Movement guidelines for the early years (04 years): an integration of physical activity, sedentary Behaviour, and Sleep. BMC Public Health. 2017;17(Suppl 5):874. https://doi.org/10.1186/s12889-017-4859-6.
Article PubMed PubMed Central Google Scholar
Dogra S, Good J, Buman MP, Gardiner PA, Copeland JL, Stickland MK. Physical activity and sedentary time are related to clinically relevant health outcomes among adults with obstructive lung Disease. BMC Pulm Med. 2018;18(1):98. https://doi.org/10.1186/s12890-018-0659-8.
Article PubMed PubMed Central Google Scholar
Dogra S, Good J, Buman MP, Gardiner PA, Stickland MK, Copeland JL. Movement behaviours are associated with lung function in middle-aged and older adults: a cross-sectional analysis of the Canadian longitudinal study on aging. BMC Public Health. 2018;18(1):818. https://doi.org/10.1186/s12889-018-5739-4.
Article PubMed PubMed Central Google Scholar
Chastin SF, Palarea-Albaladejo J, Dontje ML, Skelton DA. Combined effects of Time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: a Novel Compositional Data Analysis Approach. PLoS ONE. 2015;10(10):e0139984. https://doi.org/10.1371/journal.pone.0139984.
Article CAS PubMed PubMed Central Google Scholar
Rhodes RE, Spence JC, Berry T, Faulkner G, Latimer-Cheung AE, OReilly N, et al. Parental support of the Canadian 24-hour movement guidelines for children and youth: prevalence and correlates. BMC Public Health. 2019;19(1):1385. https://doi.org/10.1186/s12889-019-7744-7.
Article PubMed PubMed Central Google Scholar
Friel CP, Duran AT, Shechter A, Diaz KM. Meeting 24-Hour Movement guidelines among US children and adolescents: Prevalence and Age trends, 20162017. CIRCULATION 2019, 140.
da Costa BGG, Chaput J-P, Lopes MVV, Malheiros LEA, Tremblay MS, Silva KS. Prevalence and sociodemographic factors associated with meeting the 24-hour movement guidelines in a sample of Brazilian adolescents. PLoS ONE. 2020;15(9). https://doi.org/10.1371/journal.pone.0239833.
Ferrari G, Alberico C, Drenowatz C, Kovalskys I, Gomez G, Rigotti A, et al. Prevalence and sociodemographic correlates of meeting the Canadian 24-hour movement guidelines among latin American adults: a multi-national cross-sectional study. BMC Public Health. 2022;22(1). https://doi.org/10.1186/s12889-022-12613-2.
Tapia-Serrano MA, Sevil-Serrano J, Sanchez-Miguel PA, Lopez-Gil JF, Tremblay MS, Garcia-Hermoso A. Prevalence of meeting 24-Hour Movement guidelines from pre-school to adolescence: a systematic review and meta-analysis including 387,437 participants and 23 countries. J Sport Health Sci. 2022;11(4):42737. https://doi.org/10.1016/j.jshs.2022.01.005.
Article PubMed PubMed Central Google Scholar
Chen ST, Liu Y, Tremblay MS, Hong JT, Tang Y, Cao ZB, et al. Meeting 24-h movement guidelines: prevalence, correlates, and the relationships with overweight and obesity among Chinese children and adolescents. J Sport Health Sci. 2021;10(3):34959. https://doi.org/10.1016/j.jshs.2020.07.002.
Article PubMed Google Scholar
Liangruenrom N, Dumuid D, Craike M, Biddle SJH, Pedisic Z. Trends and correlates of meeting 24-hour movement guidelines: a 15-year study among 167,577 Thai adults. INTERNATIONAL JOURNAL OF BEHAVIORAL NUTRITION AND PHYSICAL ACTIVITY 2020, 17(1). https://doi.org/10.1186/s12966-020-01011-9.
Scully M, Gascoyne C, Wakefield M, Morley B. Prevalence and trends in Australian adolescents adherence to 24-hour movement guidelines: findings from a repeated national cross-sectional survey. BMC Public Health. 2022;22(1). https://doi.org/10.1186/s12889-021-12387-z.
Carson V, Zhang Z, Predy M, Pritchard L, Hesketh KD. Adherence to Canadian 24-Hour Movement guidelines among infants and associations with development: a longitudinal study. INTERNATIONAL JOURNAL OF BEHAVIORAL NUTRITION AND PHYSICAL ACTIVITY 2022, 19(1). https://doi.org/10.1186/s12966-022-01397-8.
Leppanen MH, Haapala EA, Vaisto J, Ekelund U, Brage S, Kilpelaeinen TO et al. Longitudinal and cross-sectional associations of adherence to 24-hour movement guidelines with cardiometabolic risk. Scandinavian J Med Sci Sports 2022, 32(1):25566. https://doi.org/10.1111/sms.14081.
Ferrari G, Guzman-Habinger J, Herreros-Irarrazabal D, Marques A, Marconcin P, Kovalskys I, et al. Correlates of meeting the Canadian 24-hour Movement guidelines among adults: a multi-national cross-sectional study. Volume 54. MEDICINE & SCIENCE IN SPORTS; & EXERCISE 2022. pp. 4622. 9.
Carson V, Chaput J-P, Janssen I, Tremblay MS. Health associations with meeting new 24-hour movement guidelines for Canadian children and youth. Prev Med. 2017;95(1):713. https://doi.org/10.1016/j.ypmed.2016.12.005.
Article PubMed Google Scholar
Porter C, McPhee P, Kwan M, Timmons B, Brown D. 24-Hour Movement Guideline Adherence and Mental Health: a cross-sectional study of emerging adults with Chronic Health conditions and disabilities. Volume 44. JOURNAL OF SPORT & EXERCISE PSYCHOLOGY; 2022. pp. 106S106.
Sampasa-Kanyinga H, Lien A, Hamilton HA, Chaput J-P, CANADIAN JOURNAL OF PUBLIC HEALTH-REVUE CANADIENNE DE SANTE PUBLIQUE. The Canadian 24-hour movement guidelines and self-rated physical and mental health among adolescents. 2022, 113(2):31221. https://doi.org/10.17269/s41997-021-00568-7.
Janssen I, Roberts KC, Thompson W. Is adherence to the Canadian 24-Hour Movement Behaviour Guidelines for Children and Youth associated with improved indicators of physical, mental, and social health? APPLIED PHYSIOLOGY NUTRITION AND METABOLISM 2017, 42(7):72531. https://doi.org/10.1139/apnm-2016-0681.
Pedisic Z, Dumuid D, Olds T. Integrating sleep, sedentary behaviour, and physical activity research in the emerging field of time-use epidemiology: definitions, concepts, statistical methods, theoretical framework, and future directions. Kinesiology 2017, 49.
Hyunshik K, Ma J, Sunkyoung L, Gu Y. Change in Japanese childrens 24-hour movement guidelines and mental health during the COVID-19 pandemic. Sci Rep. 2021;11(1). https://doi.org/10.1038/s41598-021-01803-4.
Moore SA, Faulkner G, Rhodes RE, Vanderloo LM, Ferguson LJ, Guerrero MD, et al. Few Canadian children and youth were meeting the 24-hour movement behaviour guidelines 6-months into the COVID-19 pandemic: follow-up from a national study. Appl Physiol Nutr METABOLISM. 2021;46(10):122540. https://doi.org/10.1139/apnm-2021-0354.
Article CAS Google Scholar
Nascimento-Ferreira MV, Carvalho JA, Nascimento EP, Maciel EDS, De Moraes ACF. The 24-hour Movement Guidelines Adherence During The Covid-19 Pandemic In Undergraduate Students From Low-income Region. CIRCULATION 2022, 145. https://doi.org/10.1161/circ.145.suppl_1.P066.
Juregui A, Salvo D, Aguilar-Farias N, Okely A. Movement behaviors during COVID-19 among latin American/Latino toddlers and pre-schoolers in Chile, Mexico and the US. Int J Environ Res Public Health. 2022;12(1):19156. https://doi.org/10.3390/ijerph17228491https://doi.org/10.1038/s41598-022-23850-1.
Article Google Scholar
Angel Tapia-Serrano M, Sanchez-Oliva D, Sevil-Serrano J, Marques A, Antonio Sanchez-Miguel P. 24-h movement behaviours in Spanish youth before and after 1-year into the covid-19 pandemic and its relationship to academic performance. Sci Rep. 2022;12(1). https://doi.org/10.1038/s41598-022-21096-5.
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clinical Research ed). 2021;372:n71. https://doi.org/10.1136/bmj.n71.
Article PubMed Google Scholar
Alanazi YA, Parrish A-M, Okely AD. 24-Hour movement behaviours and COVID-19 among children in the Kingdom of Saudi Arabia: a repeat cross-sectional study. Sports Med Health Sci 2022a, 4(3):17782. https://doi.org/10.1016/j.smhs.2022.05.001.
Alanazi YA, Parrish A-M, Okely AD. Impact of the COVID-19 virus outbreak on 24-h movement behaviours among children in Saudi Arabia: a cross-sectional survey. CHILD CARE HEALTH AND DEVELOPMENT. 2022b;48(6):10319. https://doi.org/10.1111/cch.12999.
Article Google Scholar
Arbour-Nicitopoulos KP, James ME, Moore SA, Sharma R, Martin Ginis KA. Movement behaviours and health of children and youth with disabilities: impact of the 2020 COVID-19 pandemic. Paediatr Child Health. 2022;27(Suppl 1):66S71. https://doi.org/10.1093/pch/pxac007.
Article Google Scholar
Caldwell HAT, Faulkner G, Tremblay MS, Rhodes RE, de Lannoy L, Kirk SFL, PUBLIC HEALTH-REVUE CANADIENNE DE SANTE PUBLIQUE. Regional differences in movement behaviours of children and youth during the second wave of the COVID-19 pandemic in Canada: follow-up from a national study. Volume 113. CANADIAN JOURNAL OF; 2022. pp. 53546. 4https://doi.org/10.17269/s41997-022-00644-6.
Delisle Nystrm C, Alexandrou C, Henstrm M, Nilsson E, Okely AD, Wehbe El Masri S, et al. International Study of Movement Behaviors in the Early Years (SUNRISE): Results from SUNRISE Swedens Pilot and COVID-19 Study. Int J Environ Res Public Health. 2020;17(22). https://doi.org/10.3390/ijerph17228491.
Hossain MS, Deeba IM, Hasan M, Kariippanon KE, Chong KH, Cross PL, et al. International study of 24-h movement behaviors of early years (SUNRISE): a pilot study from Bangladesh. Pilot and Feasibility Studies. 2021;7(1):176. https://doi.org/10.1186/s40814-021-00912-1.
Article PubMed PubMed Central Google Scholar
Liang K. Sleep as a Priority: 24-Hour Movement Guidelines and Mental Health of Chinese College Students during the COVID-19 pandemic. Life (Basel Switzerland). 2021;9(9). https://doi.org/10.3390/life12010028https://doi.org/10.3390/healthcare9091166.
Lpez-Gil JF, Tremblay MS, Brazo-Sayavera J. Changes in healthy behaviors and meeting 24-h Movement guidelines in Spanish and Brazilian preschoolers, children and adolescents during the COVID-19 Lockdown. Child (Basel Switzerland). 2021;8(2). https://doi.org/10.3390/children8020083.
Okely AD, Kariippanon KE, Guan H, Taylor EK, Suesse T, Cross PL, et al. Global effect of COVID-19 pandemic on physical activity, sedentary behaviour and sleep among 3-to 5-year-old children: a longitudinal study of 14 countries. BMC Public Health. 2021;21(1). https://doi.org/10.1186/s12889-021-10852-3.
Feng J, Huang WY, Lau PWC, Wong SH-S, Sit CH-P. Movement behaviors and mental health of caregivers of preschoolers in China during the COVID-19 pandemic. Prev Med. 2022;155. https://doi.org/10.1016/j.ypmed.2021.106913.
Wilde LJ, Ward G, Sewell L, Muller AM, Wark PA. Apps and wearables for monitoring physical activity and sedentary behaviour: a qualitative systematic review protocol on barriers and facilitators. 2018, 4:2055207618776454. https://doi.org/10.1177/2055207618776454.
Zeng N, Pope Z, GAO Z. Foundations of technology and health effects of physical activity. Technology in physical activity and Health Promotion. edn.: Routledge; 2017. pp. 1739.
Feng J, Zheng C. Associations between meeting 24-hour movement guidelines and health in the early years: a systematic review and meta-analysis. 2021, 39(22):254557. https://doi.org/10.1080/02640414.2021.1945183.
Memon AR, Vandelanotte C, Olds T, Duncan MJ, Vincent GE. Research Combining Physical Activity and Sleep: a bibliometric analysis. Percept Mot Skills. 2020;127(1):15481. https://doi.org/10.1177/0031512519889780.
Article PubMed Google Scholar
Messing S, Rtten A, Abu-Omar K, Ungerer-Rhrich U, Goodwin L, Burlacu I et al. How can physical activity be promoted among children and adolescents? A systematic review of Reviews Across settings. Frontiers in public health 2019, 7:55. https://doi.org/10.3389/fpubh.2019.00055.
Larouche R, Saunders TJ, Faulkner G, Colley R, Tremblay M. Associations between active school transport and physical activity, body composition, and cardiovascular fitness: a systematic review of 68 studies. J Phys Act Health. 2014;11(1):20627. https://doi.org/10.1123/jpah.2011-0345.
Article PubMed Google Scholar
Julian V, Haschke F, Fearnbach N, Gomahr J, Pixner T, Furthner D, et al. Effects of Movement Behaviors on Overall Health and Appetite Control: current evidence and perspectives in children and adolescents. Curr Obes Rep. 2022;11(1):1022. https://doi.org/10.1007/s13679-021-00467-5.
Article PubMed PubMed Central Google Scholar
Stavridou A, Kapsali E, Panagouli E, Thirios A, Polychronis K, Bacopoulou F. Obesity in children and adolescents during COVID-19 pandemic. 2021, 8(2). https://doi.org/10.3390/children8020135.
Mei X, Zhou Q, Li X, Jing P, Wang X, Hu Z. Sleep problems in excessive technology use among adolescent: a systemic review and meta-analysis. Sleep Sci Pract. 2018;2(1):9. https://doi.org/10.1186/s41606-018-0028-9.
Article Google Scholar
Wilke J, Mohr L, Tenforde AS, Edouard P, Fossati C, Gonzlez-Gross M, et al. A pandemic within the pandemic? Physical activity levels substantially decreased in Countries affected by COVID-19. Int J Environ Res Public Health. 2021;18(5). https://doi.org/10.3390/ijerph18052235.
Grao-Cruces A, Segura-Jimnez V. The role of School in Helping Children and adolescents Reach the physical activity recommendations: the UP&DOWN Study. 2019, 89(8):6128. https://doi.org/10.1111/josh.12785.
Dunton GF, Do B, Wang SD. Early effects of the COVID-19 pandemic on physical activity and sedentary behavior in children living in the U.S. BMC public health 2020, 20(1):1351. https://doi.org/10.1186/s12889-020-09429-3.
Kuzik N, Poitras VJ, Tremblay MS, Lee E-Y, Hunter S, Carson V. Systematic review of the relationships between combinations of movement behaviours and health indicators in the early years (04 years). BMC Public Health. 2017;17(5):849. https://doi.org/10.1186/s12889-017-4851-1.
Read more from the original source:
24-Hour movement behaviours research during the COVID-19 ... - BMC Public Health