Proteomics-based vaccine targets annotation and design of multi-epitope vaccine against antibiotic-resistant … – Nature.com

Sitthicharoenchai, P. et al. Streptococcus gallolyticus and Bacterial Endocarditis in Swine, United States, 20152020. Emerg. Infect. Dis. 28(1), 192 (2022).

PubMed PubMed Central Google Scholar

Hinse, D. et al. Complete genome and comparative analysis of Streptococcus gallolyticus subsp. gallolyticus, an emerging pathogen of infective endocarditis. BMC Genomics 12(1), 113 (2011).

Google Scholar

Chamat-Hedemand, S. et al. Prevalence of infective endocarditis in streptococcal bloodstream infections is dependent on streptococcal species. Circulation 142(8), 720730 (2020).

CAS PubMed Google Scholar

Arregle, F. et al. Western immunoblotting for the diagnosis of Enterococcus faecalis and Streptococcus gallolyticus infective endocarditis. Front. Cell. Infect. Microbiol. 9, 314 (2019).

CAS PubMed PubMed Central Google Scholar

Baddour, L. M. et al. Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications: A statement for healthcare professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia, American Heart Association: endorsed by the Infectious Diseases Society of America. Circulation 111(23), e394e434 (2005).

PubMed Google Scholar

Firstenberg, M.S., Contemporary Challenges in Endocarditis. 2016: BoDBooks on Demand.

Cruntu, F. et al. Streptococcus gallolyticus spontaneous infective endocarditis on native valves, in a diabetic patient. Med. Evol 3, 323328 (2014).

Google Scholar

McDonald, J. R. Acute infective endocarditis. Infect. Dis. Clin. North Am. 23(3), 643664 (2009).

PubMed PubMed Central Google Scholar

Hensler, M. E. Streptococcus gallolyticus, Infective Endocarditis, and Colon Carcinoma: New Light on an Intriguing Coincidence 10401042 (Oxford University Press, 2011).

Google Scholar

Bartolom, J.A.S. and M.A. Sanz, Streptococcus gallolyticus: a new name for a well-known old organism. Archiv. Med. 2009. 1.

Grubitzsch, H. et al. Surgery for prosthetic valve endocarditis: Associations between morbidity, mortality and costs. Interact. Cardiovasc Thoracic Surg. 22(6), 784791 (2016).

Google Scholar

Thomas, S. & Luxon, B. A. Vaccines based on structure-based design provide protection against infectious diseases. Expert Rev. Vaccines 12(11), 13011311 (2013).

CAS PubMed Google Scholar

Kazi, A. et al. Current progress of immunoinformatics approach harnessed for cellular-and antibody-dependent vaccine design. Pathogens Global Health 112(3), 123131 (2018).

PubMed PubMed Central Google Scholar

Dey, J., et al., Designing of multi-epitope peptide vaccine against Acinetobacter baumannii through combined immunoinformatics and protein interactionbased approaches. Immunologic Research, 2023: p. 124.

Dey, J. et al. Designing a novel multi-epitope vaccine to evoke a robust immune response against pathogenic multidrug-resistant Enterococcus faecium bacterium. Gut Pathogens 14(1), 120 (2022).

CAS Google Scholar

Dey, J. et al. Exploring Klebsiella pneumoniae capsule polysaccharide proteins to design multiepitope subunit vaccine to fight against pneumonia. Expert Rev. Vaccines 21(4), 569587 (2022).

CAS PubMed Google Scholar

Mahapatra, S. R. et al. The potential of plant-derived secondary metabolites as novel drug candidates against Klebsiella pneumoniae: molecular docking and simulation investigation. South African J. Bot. 149, 789797 (2022).

CAS Google Scholar

Narang, P. K. et al. Functional annotation and sequence-structure characterization of a hypothetical protein putatively involved in carotenoid biosynthesis in microalgae. South African J. Bot. 141, 219226 (2021).

CAS Google Scholar

Mahapatra, S. R. et al. Immunoinformatics-guided designing of epitope-based subunit vaccine from Pilus assembly protein of Acinetobacter baumannii bacteria. J. Immunol. Methods 508, 113325 (2022).

CAS PubMed Google Scholar

Caputo, A., Fournier, P.-E. & Raoult, D. Genome and pan-genome analysis to classify emerging bacteria. Biol. Direct 14(1), 19 (2019).

Google Scholar

Narang, P. K. et al. Genome-based identification and comparative analysis of enzymes for carotenoid biosynthesis in microalgae. World J. Microbiol. Biotechnol. 38, 122 (2022).

Google Scholar

Chaudhari, N. M., Gupta, V. K. & Dutta, C. BPGA-an ultra-fast pan-genome analysis pipeline. Sci. Rep. 6(1), 24373 (2016).

ADS CAS PubMed PubMed Central Google Scholar

Wei, W. et al. Geptop: A gene essentiality prediction tool for sequenced bacterial genomes based on orthology and phylogeny. PloS One 8(8), e72343 (2013).

ADS CAS PubMed PubMed Central Google Scholar

Qi, J., Luo, H. & Hao, B. CVTree: A phylogenetic tree reconstruction tool based on whole genomes. Nucleic Acids Res.arch 32(suppl_2), W45W47 (2004).

CAS Google Scholar

Altschul, S. F. et al. Basic local alignment search tool. J. Mol. Biol. 215(3), 403410 (1990).

CAS PubMed Google Scholar

Goyal, M. & Citu, S. In silico identification of novel drug targets in Acinetobacter baumannii by subtractive genomic approach. Asian J. Pharm. Clin. Res. 11(3), 230236 (2018).

Google Scholar

Savojardo, C. et al. BUSCA: An integrative web server to predict subcellular localization of proteins. Nucleic Acids Res. 46(W1), W459W466 (2018).

CAS PubMed PubMed Central Google Scholar

Doytchinova, I. A. & Flower, D. R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 8(1), 4 (2007).

Google Scholar

Dimitrov, I. et al. AllerTOP v.2A server for in silico prediction of allergens. J. Mol. Model. 20, 16 (2014).

CAS Google Scholar

Garg, V. K. et al. MFPPImulti FASTA ProtParam interface. Bioinformation 12(2), 74 (2016).

PubMed PubMed Central Google Scholar

Chen, Y. et al. Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT. Mamm. Genome 14, 859865 (2003).

CAS PubMed Google Scholar

Wang, P. et al. Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinform. 11(1), 112 (2010).

Google Scholar

Saha, S. & Raghava, G. P. S. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins Struct. Funct. Bioinform. 65(1), 4048 (2006).

CAS Google Scholar

Doytchinova, I. A. & Flower, D. R. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 8(1), 17 (2007).

Google Scholar

Gupta, S. et al. In silico approach for predicting toxicity of peptides and proteins. PloS One 8(9), e73957 (2013).

ADS CAS PubMed PubMed Central Google Scholar

Moutaftsi, M. et al. A consensus epitope prediction approach identifies the breadth of murine T CD8+-cell responses to vaccinia virus. Nat. Biotechnol. 24(7), 817819 (2006).

CAS PubMed Google Scholar

Dhanda, S. K., Vir, P. & Raghava, G. P. Designing of interferon-gamma inducing MHC class-II binders. Biol. Direct 8(1), 115 (2013).

Google Scholar

Bui, H.-H. et al. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinform. 7(1), 15 (2006).

Google Scholar

Dhanda, S. K. et al. IEDB-AR: Immune epitope databaseAnalysis resource in 2019. Nucleic Acids Res. 47(W1), W502W506 (2019).

CAS PubMed PubMed Central Google Scholar

Li, W. et al. Peptide vaccine: Progress and challenges. Vaccines 2(3), 515536 (2014).

CAS PubMed PubMed Central Google Scholar

Dong, R. et al. Contriving multi-epitope subunit of vaccine for COVID-19: immunoinformatics approaches. Front. Immunol. 11, 1784 (2020).

CAS PubMed PubMed Central Google Scholar

Cheng, J. et al. SCRATCH: A protein structure and structural feature prediction server. Nucleic acids Res. 33(2), W72W76 (2005).

ADS MathSciNet CAS PubMed PubMed Central Google Scholar

Heo, L., Park, H. & Seok, C. GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Res. 41(W1), W384W388 (2013).

PubMed PubMed Central Google Scholar

Lovell, S. C. et al. Structure validation by C geometry: , and C deviation. Proteins Struct. Funct. Bioinform. 50(3), 437450 (2003).

CAS Google Scholar

Lengths, M. & Angles, M. Limitations of structure evaluation tools errat. Quick Guideline Comput. Drug Des. 16, 75 (2018).

Google Scholar

Wiederstein, M. & Sippl, M. J. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35(s2), W407W410 (2007).

PubMed PubMed Central Google Scholar

Dhanda, S. K. et al. IEDB-AR: Immune epitope databaseAnalysis resource in 2019. Nucleic Acids Res. 47(W1), W502W506 (2019).

CAS PubMed PubMed Central Google Scholar

Magnan, C. N. et al. High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics 26(23), 29362943 (2010).

CAS PubMed PubMed Central Google Scholar

Geourjon, C. & Deleage, G. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics 11(6), 681684 (1995).

CAS Google Scholar

Ponomarenko, J. et al. ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 9(1), 18 (2008).

MathSciNet Google Scholar

Craig, D. B. & Dombkowski, A. A. Disulfide by Design 2.0: A web-based tool for disulfide engineering in proteins. BMC Bioinform. 14(1), 17 (2013).

Google Scholar

Van Zundert, G. et al. The HADDOCK2.2 web server: User-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 428(4), 720725 (2016).

Originally posted here:

Proteomics-based vaccine targets annotation and design of multi-epitope vaccine against antibiotic-resistant ... - Nature.com

Related Posts
Tags: